


#### The 1000 Genomes Project Tutorial

12<sup>th</sup> April 2012 Laura Clarke





#### Updates to slides

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/working/20120410 tutorial docs/

Documents also available in the shared disk on your desktops



#### Glossary

- Pilot: The 1000 Genomes project ran a pilot study between 2008 and 2010
- Phase 1: The initial round of exome and low coverage sequencing of 1000 individuals
- Phase 2: Expanded sequencing of 1700 individuals and method improvement
- SAM/BAM: Sequence Alignment/Map Format, an alignment format
- VCF: Variant Call Format, a variant format
- Date Formats: 1000 genomes dates are always represented as YYYYMMDD



#### **Outline**

- Introduction to the Project
- Data Availability, the FTP Site and File Formats
- Exercise, Finding data and handling data
- The Browser
- The Tools,
- Exercise Tool use

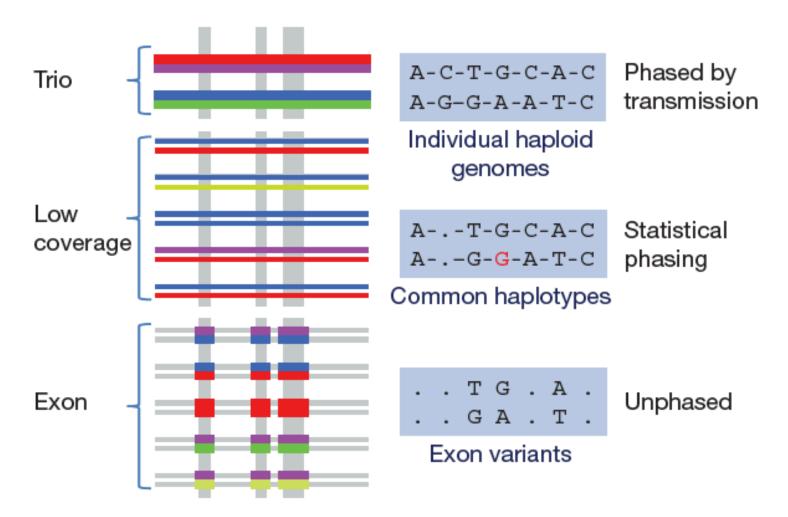




## Introduction to the Project






#### The 1000 Genomes Project: Overview

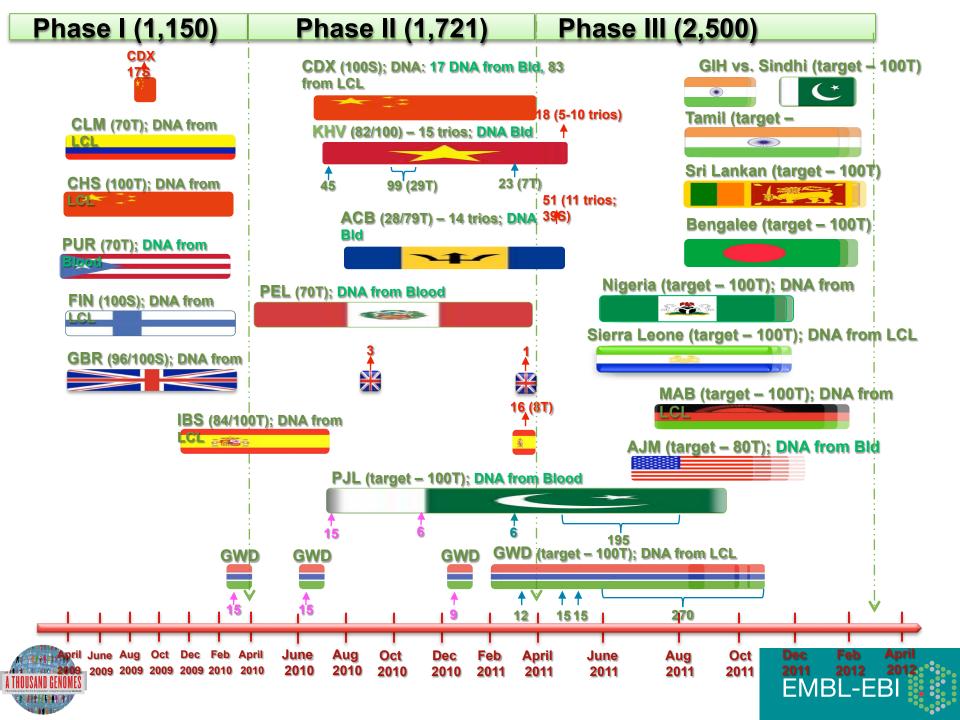
- International project to construct a foundational data set for human genetics
  - Discover virtually all common human variations by investigating many genomes at the base pair level
  - Consortium with multiple centers, platforms, funders
- Aims
  - Discover population level human genetic variations of all types (95% of variation > 1% frequency)
  - Define haplotype structure in the human genome
  - Develop sequence analysis methods, tools, and other reagents that can be transferred to other sequencing projects





#### 3 pilot coverage strategies








#### Main Project Design

- Based on the result of the pilot project, we decided to collect data on more than 2,500 samples from 5 continental groupings
  - Whole-genome low coverage data (>4x)
  - Full exome data at deep coverage (>20x)
  - 500 deep coverage genomes to be sequenced
  - High density genotyping at subsets of sites using both Illumina
     Omni and Affymetrix Axiom
- Phase 1 Release Integrated Variant Release has been made.





### Hapmap, The Pilot Project and The Main Project

- Hapmap
  - Starting in 2002
  - Last release contained ~3m snps
  - 1400 individuals
  - 11 populations
  - High Throughput genotyping chips

#### 1000 Genomes Pilot project

- Started in 2008
- Paper release contained ~14 million snps
- 179 individuals
- 4 populations
- Low coverage next generation sequencing

#### 1000 Genomes Phase 1

- Started in 2009
- Phase 1 release has 36.6millon snps, 1.5millon indels and 14K deletions
- 1092 individuals
- 14 populations
- Low coverage and exome next generation sequencing

#### 1000 Genomes Phase 2

- Started in 2011
- 1721 individuals
- 19 Populations

Low coverage and exome next generation sequencing





#### **Timeline**

- September 2007: 1000 Genomes project formally proposed Cambridge, UK
- April 2008: First Submission of Data to the Short Read Archive.
- May 2008: First public data release.
- October 2008: SAM/BAM Format Defined.
- December 2008: First High Coverage Variants Released.
- December 2008: First 1000 genomes browser released
- May 2009: First Indel Calls released.
- July 2009: VCF Format defined
- August 2009: First Large Scale Deletions released.
- December 2009: First Main Project Sequence Data Released.
- March 2010: Low Coverage Pilot Variant Release made
- July 2010: Phased genotypes for 159 Individuals released.
- October 2010: A Map of Human Variation from population scale sequencing is published in Nature.
- January 2011: Final Phase 1 Low coverage alignments are released
- May 2011: @1000genomes appears on Twitter
- May 2011: First Variant Release made on more than 1000 individuals
- October 2011: Phase 1 integrated variant release made



### **Sequencing Data Evolution**

 The Project contains data from 3 different providers and multiple platforms

| Platform                     | Min Read Length (bp) | Max Read Length (bp) |
|------------------------------|----------------------|----------------------|
| 454 Roche GS FLX<br>Titanium | 70                   | 400                  |
| Illumina GA                  | 30                   | 81                   |
| Illumina GA II               | 26                   | 160                  |
| Illumina HiSeq               | 50                   | 102                  |
| ABI Solid System 2.0         | 25                   | 35                   |
| ABI Solid System 2.5         | 50                   | 50                   |
| ABI Solid System 3.0         | 50                   | 50                   |





# Fraction of variant sites present in an individual that are <u>NOT</u> already represented in dbSNP

| Date           | Fraction <u>not</u> in dbSNP |
|----------------|------------------------------|
| February, 2000 | 98%                          |
| February, 2001 | 80%                          |
| April, 2008    | 10%                          |
| February, 2011 | 2%                           |
| Now            | <1%                          |

Ryan Poplin, David Altshuler





#### 1000 Genomes Project: Present & Future

- First Phase 2 sequence release 14<sup>th</sup> November 2011
- First Phase 2 alignment release 12<sup>th</sup> March 2012
- First Phase 2 variant site release Summer 2012
- Sample collected expected end to June 2012
- Final Phase 3 Sequence release expected December 2012
- 2013 will represent finalization of 1000 genomes analysis results and final data releases





#### Pipelines for data processing and variant calling

- Tens of analysis groups have contributed
- Individual pipelines and component tools vary
- Typical main steps:
  - Read mapping
  - Duplicate filtering
  - Base quality score recalibration
  - INDEL realignment
  - Variant Site Discovery
  - Individual Genotype Assignment (sometimes part of site discovery)
  - Variant filtering / call set refinement
  - Variant reporting





#### **Alignment Data**

- The project has made more than 10 releases of Alignment Data
- Pilot Project
  - Aligned to NCBI36
  - Maq and Corona
  - Base Quality Recalibration done
- Phase 1
  - Aligned to GRCh37
  - BWA and Bfast
  - Indel Realignment
- Phase 2
  - Aligned to extended GRCh37
  - Improvements to Base Quality Recalibration





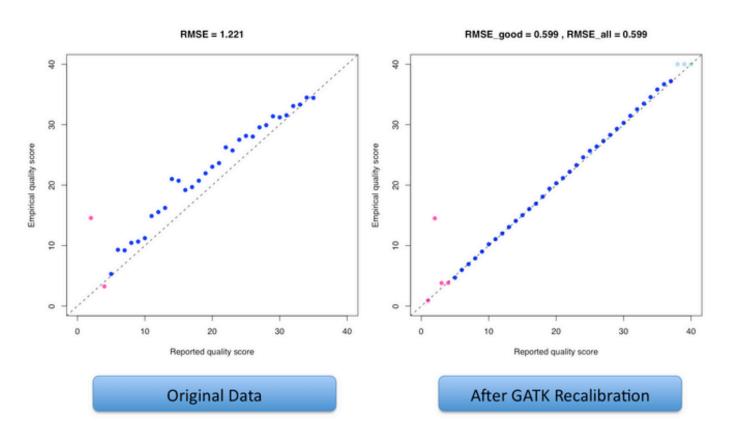
### Methods for Phase 1 Alignments

| Platform | Strategy     | Aligner | Centre         |
|----------|--------------|---------|----------------|
| Solid    | Low Coverage | Bfast   | TGEN           |
|          | Exome        | Bfast   | Baylor         |
| Illumina | Low Coverage | BWA     | Sanger         |
|          | Exome        | Mosaik  | Boston College |
| 454      | Low Coverage | SSAHA   | Sanger         |





#### **Base Quality Score Recalibration**


- 1000 Genomes Sequence Data is sourced from many different machines across many different institutes
- Each machine may assign Base Quality Values differently
- Base Quality Score Recalibration tests empirical error rates
  - Run alignment
  - Compare mismatches to know variation
- Base Qualities adjusted on basis of empirical measurements





#### **Base Quality Score Recalibration**

#### Reported Quality vs. Empirical Quality







#### Variant Calling

- Early call sets used a single variant caller
- Intersect approach developed during pilot
- Variant Quality Score Recalibration (VQSR) developed for Phase 1
- Genotype Likelihoods assigned to help with genotype calling
- Integrated genotype calling based on individual variant call sets
- Phase 2 looks to improve site discovery and improve integration



#### Variant Quality Score Recalibration

- Multiple Different Variant Callers are used as part of the 1000 Genomes
- Variant Quality Score Recalibration used to define high quality variants from large input set
- Variants as points in a point cloud can be modeled using a Gaussian mixture model
- Model compared to various statistical models to define best set of variants



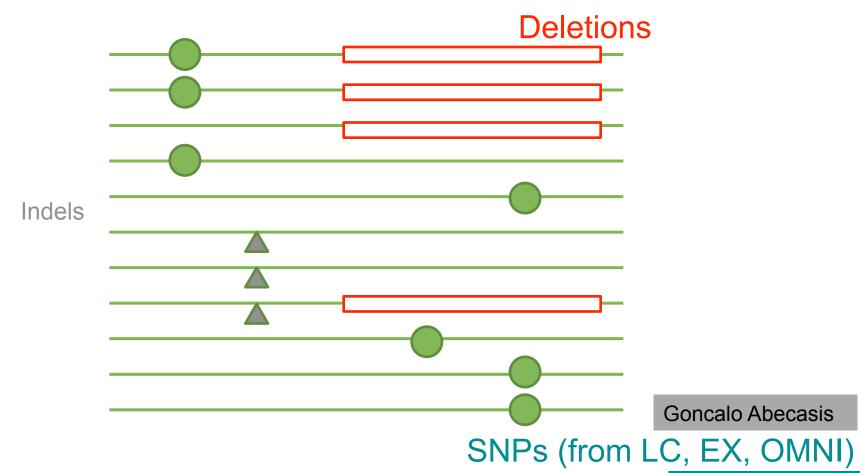
#### VQSR consensus out performs previous merging strategy

|                              |                         |                     |             |                |                          | 0,                              |
|------------------------------|-------------------------|---------------------|-------------|----------------|--------------------------|---------------------------------|
| Called In                    | Total #<br>variant<br>s | dbSNP<br>%<br>(129) | #<br>novels | Novel<br>ti/tv | Omni poly<br>sensitivity | Omni mono<br>false<br>discovery |
| Union                        | 46.26M                  | 19.39%              | 37.29M      | 1.998          | 98.94%<br>2.09M / 2.12M  | 16.31%<br>9,739 / 59,721        |
| 2 of 6                       | 39.11M                  | 22.24%              | 30.41M      | 2.153          | 98.55%<br>2.09M / 2.12M  | <b>11.23%</b><br>6,707 / 59,721 |
| 3 of 6                       | 35.69M                  | 23.62%              | 27.26M      | 2.219          | 98.09%<br>2.08M / 2.12M  | <b>3.66%</b><br>2,184 / 59,721  |
| 4 of 6                       | 32.55M                  | 24.82%              | 24.48M      | 2.263          | 97.39%<br>2.06M / 2.12M  | <b>1.82%</b><br>1,085 / 59,721  |
| 5 of 6                       | 28.45M                  | 26.72%              | 20.85M      | 2.286          | 95.93%<br>2.03M / 2.12M  | <b>1.06%</b><br>634 / 59,721    |
| Intersectio<br>n             | 24.02M                  | 27.57%              | 17.40M      | 2.317          | 89.23%<br>1.89M / 2.12M  | <b>0.76%</b><br>457 / 59,721    |
|                              |                         |                     |             |                |                          |                                 |
| VQSR<br>Project<br>Consensus | 38.88M                  | 21.92%              | 30.36M      | 2.154          | 98.41%<br>2.08M / 2.12M  | <b>2.11%</b><br>1,261 / 59,721  |





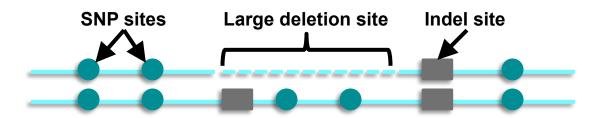
### Methods for integrated genotypes


| Comp                | onents                                                    | SNPs                                          | INDELs               | SVs                       |
|---------------------|-----------------------------------------------------------|-----------------------------------------------|----------------------|---------------------------|
| Low-Pass<br>Genomes | Call Sets                                                 | BC, BCM, BI<br>NCBI, SI, UM                   | BC, BI, DI<br>OX, SI | BI, EBI, EMBL<br>UW, Yale |
|                     | Consensus                                                 | VQSR                                          | VQSR                 | GenomeSTRi<br>P           |
| Deep<br>Exomes      | Call Sets                                                 | BC, BCM, BI<br>UM, WCMC                       | N/A                  | N/A                       |
|                     | Consensus                                                 | SVM                                           | N/A                  | N/A                       |
| Like                | <b>Likelihood</b> BBMM GATK Genome                        |                                               | GenomeSTRi<br>P      |                           |
| Site                | Site Models Variants are linearly ordered as point mutati |                                               | point mutations      |                           |
| Haplotyper          |                                                           | MaCH/Thunder with BEAGLE's initial haplotypes |                      |                           |



### Phase 1 analysis goal: an integrated view of

#### human variations


Reconstruct haplotypes including all variant types, using all datasets

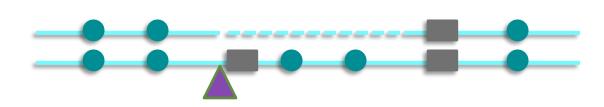






## Strategies for integrating deletions with other types of variation




#### **Previous Approach**

Remove SNPs under SVs for imputation (1000G pilot, Handsaker et al., 2010)



#### **Current Approach**


Treat SVs as point events (1000 Genomes phase 1)



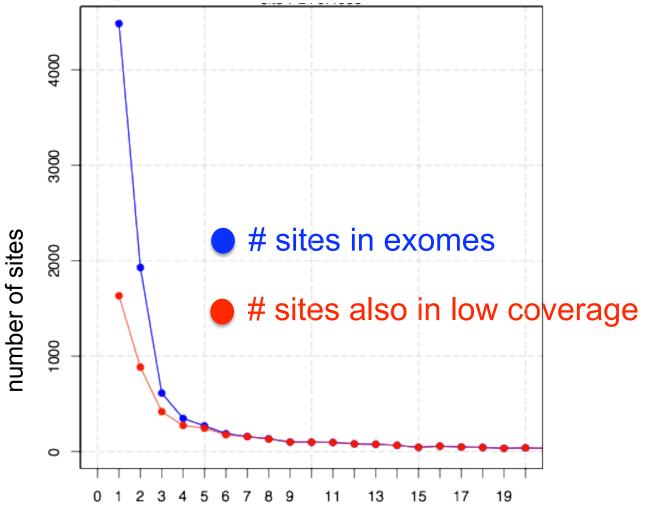




#### From PILOT to PHASE1



**EMBL-EBI** 




#### From PILOT to PHASE1: Improved SNP calls

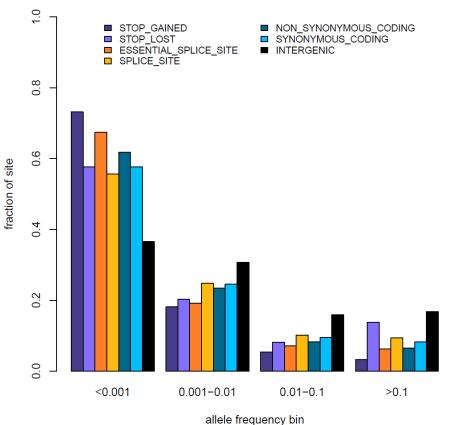
PHASE1-only 23.8M SNPs **PILOT & PHASE 1**  Ts/Tv 2.16 • 13.1M SNPs Includes Ts/Tv 2.18 **1.2% of HapMap3**  Includes **97.7% of HapMap3** 0.3% of OMNI-MONO **PILOT-only** 1.2% of OMNI-MONO • 1.7M SNPs Ts/Tv 1.11 Includes 0.15% HapMap3 59.6% of OMNI-MONO

100k monomorphic SNPs in 2.5M OMNI Array (>1,000 individuals)

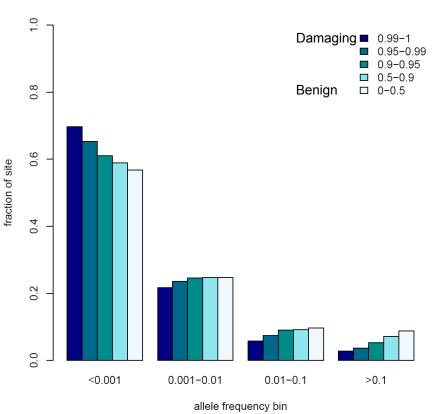
## Deep coverage exome data is more sensitive to low-frequency variants



Allele count in 766 exomes (chr. 20, exons only)


Erik Garrison





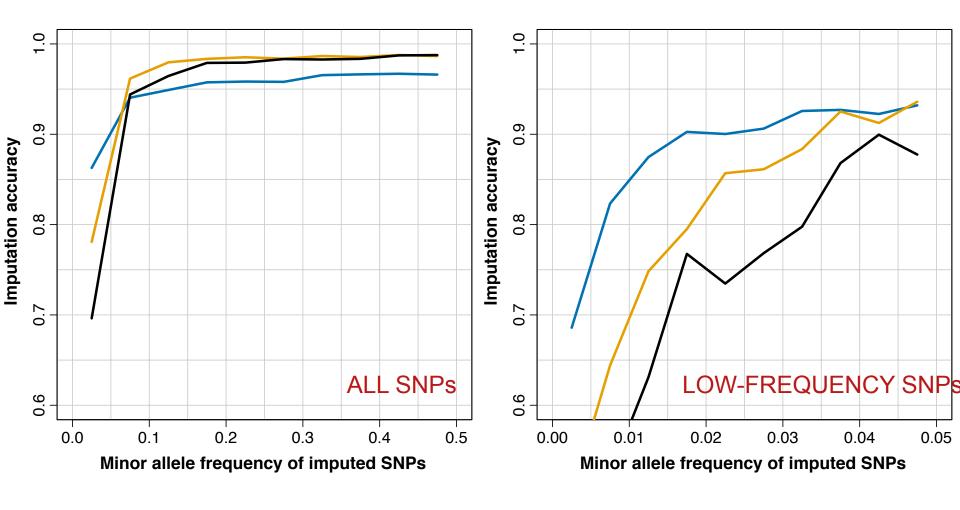

## Newly discovered SNPs are mostly at low frequency and enriched for functional variants

#### Functional category



#### Non-synonymous: Condel score




Presentation on using the data for GWAS by Brian Howie

Enza Colonna, Yuan Chen, Yali Xue





#### 1,000 Genomes haplotypes are highly accurate






African ancestry

— Admixed (Americas)

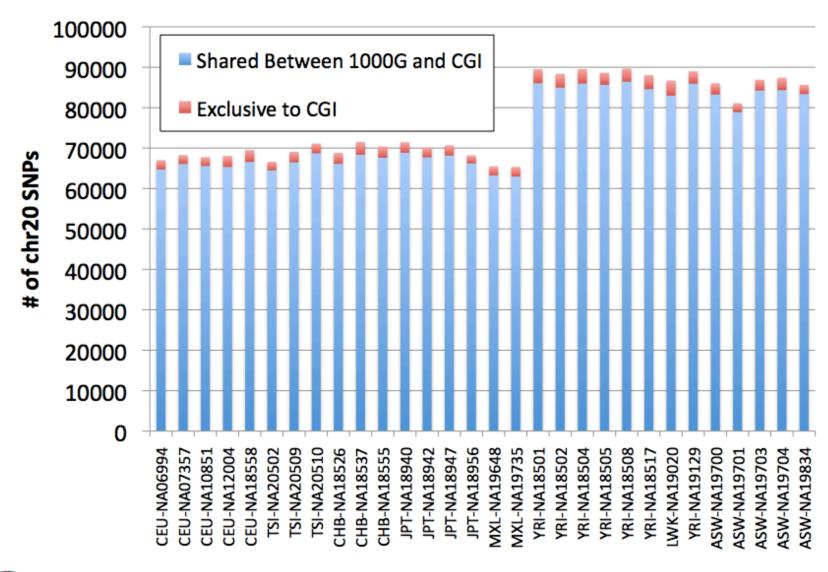




#### Imputation accuracy depends on your GWAS chip






--- Illumina 550k

•••• Affymetrix 500k





#### >96% SNPs are detected compared to deep genomes







## Data Availability, FTP site and File Formats





#### **Command Line Tools**

- Samtools <a href="http://samtools.sourceforge.net/">http://samtools.sourceforge.net/</a>
- VCFTools <a href="http://vcftools.sourceforge.net/">http://vcftools.sourceforge.net/</a>
- Tabix <a href="http://sourceforge.net/projects/samtools/files/tabix/">http://sourceforge.net/projects/samtools/files/tabix/</a>
  - (Please note it is best to use the trunk svn code for this as the 0.2.5 release has a bug)
  - svn co <a href="https://samtools.svn.sourceforge.net/svnroot/samtools/trunk/tabix">https://samtools.svn.sourceforge.net/svnroot/samtools/trunk/tabix</a>





#### File Formats

- Sequence in Fastq
- Alignments in SAM/BAM
- Variant Calls in VCF
- Other data
  - ped
  - gff/gtf
  - bed





#### Sequence Data

- Fastq files
  - @ERR050087.1 HS18\_6628:8:1108:8213:186084#2/1
  - GGTTAGGGTTAGGGTTAGGGTTAGG
  - +
  - DCDHKHKKIJGNNHIJIIKLLMCLKMAILIJH3K>HL1I=>MK.D
  - http://www.1000genomes.org/faq/what-format-are-yoursequence-files





# Alignment Data

- BAM files
- ERR052835 163 11 60239 0 100M = 60609 469
- http://samtools.sourceforge.net/

| NAME  | DESCRIPTION                                        |
|-------|----------------------------------------------------|
| QNAME | Query NAME of the read or read pair                |
| FLAG  | Bitwise FLAG (pairing, strand, mate strand etc     |
| RNAME | Reference Sequence NAME                            |
| POS   | 1-Based leftmost POSition of clipped alignment     |
| MAPQ  | MAPping Quality (Phred-scaled)                     |
| CIGAR | Extended CIGAR string (operations: MIDNSHP)        |
| MRNM  | Mate Reference NaMe ('=' if same as RNAME)         |
| MPOS  | 1-Based leftmost Mate POSition                     |
| ISIZE | Inferred Insert SIZE                               |
| SEQ   | Query SEQuence on the same strand as the reference |
| QUAL  | Query QUALity (ASCII-33=Phred base quality)        |

**EMBL-EBI** 

# Alignment data: Extended Cigar Strings

Cigar has been traditionally used as a compact way to represent a sequence alignment. BAM files contain an extended version of this cigar string

Operations include

M - match or mismatch

I - insertion

D - deletion

SAM extends these to include

S - soft clip

H - hard clip

N - skipped bases

P - padding

E.g. Read: ACGCA-TGCAGTtagacgt

Ref: ACTCAGTG----GT

Cigar: 5M1D2M2I2M7S





## More Information About BAM Files

- http://samtools.sourceforge.net/
- samtools-help@lists.sourceforge.net

## THE OCQUERICE AUGUMENT WITH TOTAL AND OAMITOUS

Heng Li<sup>1,†</sup>, Bob Handsaker<sup>2,†</sup>, Alec Wysoker<sup>2</sup>, Tim Fennell<sup>2</sup>, Jue Ruan<sup>3</sup>, Nils Homer<sup>4</sup>, Gabor Marth<sup>5</sup>, Goncalo Abecasis<sup>6</sup>, Richard Durbin<sup>1,\*</sup> and 1000 Genome Project Data Processing Subgroup<sup>7</sup>

<sup>1</sup>Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, CB10 1SA, UK, <sup>2</sup>Broad Institute of MIT and Harvard, Cambridge, MA 02141, USA, <sup>3</sup>Beijing Institute of Genomics, Chinese Academy of Science, Beijing 100029, China, <sup>4</sup>Department of Computer Science, University of California Los Angeles, Los Angeles, CA 90095, <sup>5</sup>Department of Biology, Boston College, Chestnut Hill, MA 02467, <sup>6</sup>Center for Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA and <sup>7</sup>http://1000genomes.org

Received on April 28, 2009; revised on May 28, 2009; accepted on May 30, 2009

Advance Access publication June 8, 2009

Associate Editor: Alfonso Valencia

#### **ABSTRACT**

**Summary:** The Sequence Alignment/Map (SAM) format is a generic alignment format for storing read alignments against reference sequences, supporting short and long reads (up to 128 Mbp) produced by different sequencing platforms. It is flexible in style, compact in size, efficient in random access and is the format in which alignments from the 1000 Genomes Project are released. SAMtools implements various utilities for post-processing alignments in the SAM format, such as indexing, variant caller and alignment viewer,

#### 2 METHODS

#### 2.1 The SAM format

2.1.1 Overview of the SAM format The SAM format consists of one header section and one alignment section. The lines in the header section start with character '@', and lines in the alignment section do not. All lines are TAB delimited. An example is shown in Figure 1b.

In SAM, each alignment line has 11 mandatory fields and a variable number of optional fields. The mandatory fields are briefly described in Table 1. They must be present but their value can be a '\*' or a zero (depending





# Variant Call Data

- VCF Files

| <ul> <li>TAB Delimited Text Format</li> </ul> |                                                                                    |  |  |
|-----------------------------------------------|------------------------------------------------------------------------------------|--|--|
| NAME                                          | DESCRIPTION                                                                        |  |  |
| CHROM                                         | Chromosome name                                                                    |  |  |
| POS                                           | Position in chromosome                                                             |  |  |
| ID                                            | Unique Identifer of variant                                                        |  |  |
| REF                                           | Reference Allele                                                                   |  |  |
| ALT                                           | Alternative Allele                                                                 |  |  |
| QUAL                                          | Phred scaled quality value                                                         |  |  |
| FILTER                                        | Site filter information                                                            |  |  |
| INFO                                          | User extensible annotation                                                         |  |  |
| FORMAT                                        | Describes the format of the subsequent fields, must always contain Genotype        |  |  |
| Individual<br>Genotype<br>Fields              | These columns contain the individual genotype data for each individual in the file |  |  |





## Variant Call Data

## Headers

```
##fileformat=VCFv4.1
##INFO=<ID=RSQ,Number=1,Type=Float,Description="Genotype imputation"
quality from MaCH/Thunder">
##INFO=<ID=AC, Number=., Type=Integer, Description="Alternate Allele Count">
##INFO=<ID=AN, Number=1, Type=Integer, Description="Total Allele Count">
##INFO=<ID=AA, Number=1, Type=String, Description="Ancestral Allele, ftp://ftp.
1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/ancestral_alignments/
README">
##INFO=<ID=AF, Number=1, Type=Float, Description="Global Allele Frequency
based on AC/AN">
##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype">
##FORMAT=<ID=DS, Number=1, Type=Float, Description="Genotype dosage"
from MaCH/Thunder">
##FORMAT=<ID=GL, Number=., Type=Float, Description="Genotype"
Likelihoods">
```





## Variant Call Data

- Example 1000 Genomes Data
- CHROM 4
- POS 42208061
- ID rs186575857
- REF T
- ALT C
- QUAL 100
- FILTER PASS
- INFO AA=T;AN=2184;AC=1;RSQ=0.8138;AF=0.0005;
- FORMAT GT:DS:GL
- GENOTYPE 0|0:0.000:-0.03,-1.19,-5.00





## More Information About VCF Files

## http://vcftools.sourceforge.net/

vcftools-help@lists.sourceforge.net

#### **BIOINFORMATICS APPLICATIONS NOTE**

Vol. 27 no. 15 2011, pages 2156-2158 doi:10.1093/bioinformatics/btr330

Sequence analysis

Advance Access publication June 7, 2011

#### The variant call format and VCFtools

Petr Danecek<sup>1,†</sup>, Adam Auton<sup>2,†</sup>, Goncalo Abecasis<sup>3</sup>, Cornelis A. Albers<sup>1</sup>, Eric Banks<sup>4</sup>, Mark A. DePristo<sup>4</sup>, Robert E. Handsaker<sup>4</sup>, Gerton Lunter<sup>2</sup>, Gabor T. Marth<sup>5</sup>, Stephen T. Sherry<sup>6</sup>, Gilean McVean<sup>2,7</sup>, Richard Durbin<sup>1,\*</sup> and 1000 Genomes Project Analysis Group<sup>‡</sup>

<sup>1</sup>Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, <sup>2</sup>Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK, 3Center for Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, <sup>4</sup>Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02141. <sup>5</sup>Department of Biology, Boston College, MA 02467, <sup>6</sup>National Institutes of Health National Center for Biotechnology Information, MD 20894, USA and <sup>7</sup>Department of Statistics, University of Oxford, Oxford OX1 3TG, UK

Associate Editor: John Quackenhush

## VCF variant files

### Tabia, Tabi Tetrieval di bequelloe features Itolii genero

#### TAB-delimited files

Program in Medical Population Genetics, The Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA Associate Editor: Dmitrij Frishman

## All indexed for fast retrieval

#### **ABSTRACT**

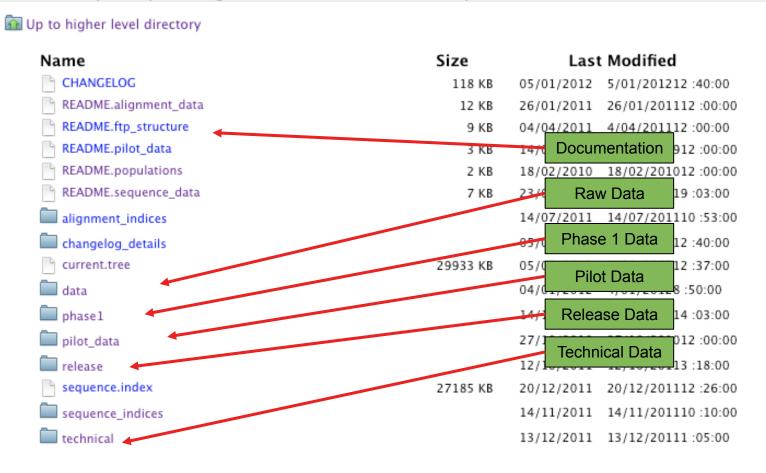
Summary: Tabix is the first generic tool that indexes position sorted files in TAB-delimited formats such as GFF, BED, PSL, SAM and SQL export, and quickly retrieves features overlapping specified regions. Tabix features include few seek function calls per guery, data compression with gzip compatibility and direct FTP/HTTP access. Tabix is implemented as a free command-line tool as well as a library in C, Java, Perl and Python. It is particularly useful for manually examining local genomic features on the command line and enables

#### 2 METHODS

Tabix indexing is a generalization of BAM indexing for generic TABdelimited files. It inherits all the advantages of BAM indexing, including data compression and efficient random access in terms of few seek function calls per query.

#### 2.1 Sorting and BGZF compression

Before being indexed, the data file needs to be sorted first by sequence name and then by leftmost coordinate, which can be done with the standard Unix






# ftp://ftp.1000genomes.ebi.ac.uk

# ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp

Index of ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/







## Meta Data Formats

- Sequence Index
  - Sequence meta data from ENA
- Alignment Index
  - Location and md5sum for Alignment Files
- BAS
  - Read group level alignment statistics
- HsMetrics
  - Exome alignment statistics based on Picard CalculateHsMetrics





# Sequence Index

- Meta Data File to present information about each fastq file
- Allows easy location of specific subsets of data
- Use to denote specific sequence freezes
- Sequence indices directory contains complete history
- Named
  - YYYYMMDD.sequence.index
  - 20120130.sequence.index is most current



| Sequence Index          | Description                 | Column                  | Description                 |
|-------------------------|-----------------------------|-------------------------|-----------------------------|
| 1. Fastq File           | Relative path to file       | 14. Instrument Model    | Sequencing Machine<br>Model |
| 2. MD5 checksum         | Checksum for file           | 15. Library Name        |                             |
| 3. Run ID               | SRA run id                  | 16. Run Name            |                             |
| 4. Study ID             | SRA study id                | 17. Run Block Name      | No Longer used              |
| 5. Study Name           | SRA study descriptor        | 18. Insert Size         | Estimated Insert Size       |
| 6. Center Name          | Submission Center           | 19. Library Layout      | Paired or Single ended      |
| 7. Submission ID        | SRA submission id           | 20. Paired Fastq        | Paired Fastq File           |
| 8. Submission Date      | Date of Submission          | 21. Withdrawn           | Withdrawn Status            |
| 9. Sample ID            | SRA Sample ID               | 22. Withdrawn Date      |                             |
| 10. Sample Name         | Coriell Sample name         | 23. Withdrawn<br>Reason |                             |
| 11. Population          | Population Code             | 24. Read Count          |                             |
| 12. Experiment ID       | SRA Experiment ID           | 25. Base Count          |                             |
| 13. Instrument Platform | Sequencing Machine Platform | 26. Analysis Group      | Sequencing Strategy         |

# Alignment Index

- 6 column file pointing to location of BAM files
- Bam filenames contains majority of information
  - Sample\_name.location.instrument\_platform.alignment\_algorithm. population.analysis\_group.Index\_data.bam
- Alignment index lines contains location and md5 for
  - BAM file
  - BAI file
  - BAS file



## Bas files

- Alignment statistics
- Read group level stats for each alignment
- 21 column file including
  - Read group name
  - Sample name
  - Total Base Count
  - Mapped Base Count
  - Duplicate Base Count





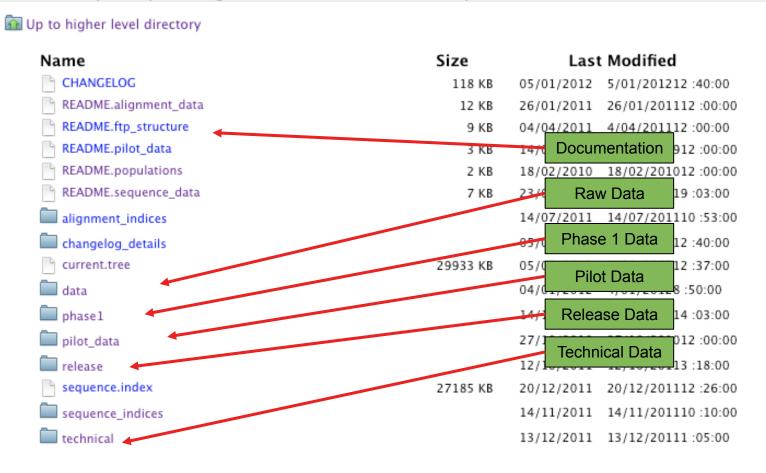
## **HsMetrics Files**

- Picard Command line tool, CalculateHsMetric
- Used to define completed Exome
- Distributed in gzipped format
- Contains 38 columns like
  - File\_name
  - ON\_BAIT\_BASES
  - MEAN\_BAIT\_COVERAGE
  - PCT\_TARGET\_BASES\_20X



## FTP Site

- Two mirrored ftp sites
  - ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp
  - ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp
- NCBI site is direct mirror of EBI site
- Can be up to 24 hours out of date
- Both also accessible using aspera
- http://asperasoft.com/
- EBI site has http mirror
  - http://ftp.1000genomes.ebi.ac.uk/vol1/ftp






# ftp://ftp.1000genomes.ebi.ac.uk

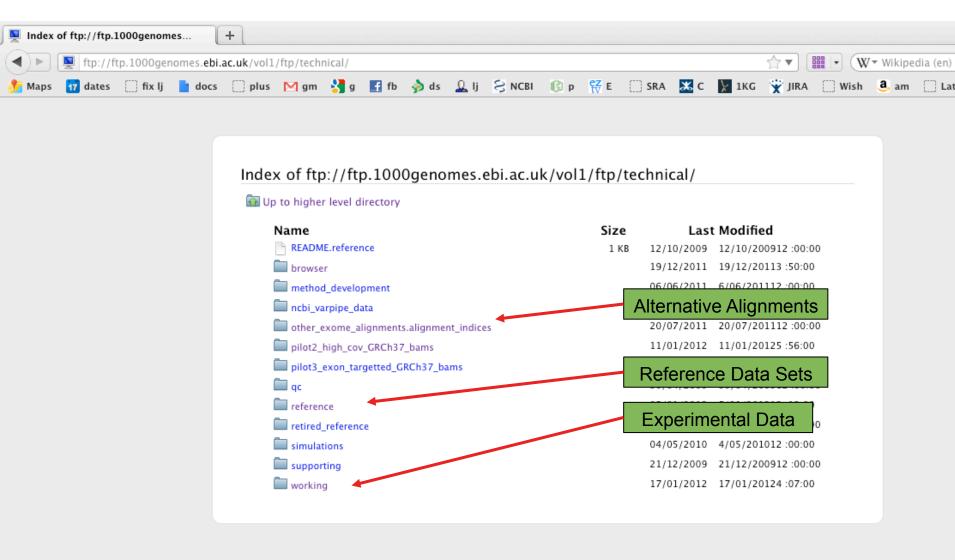
# ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp

Index of ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/





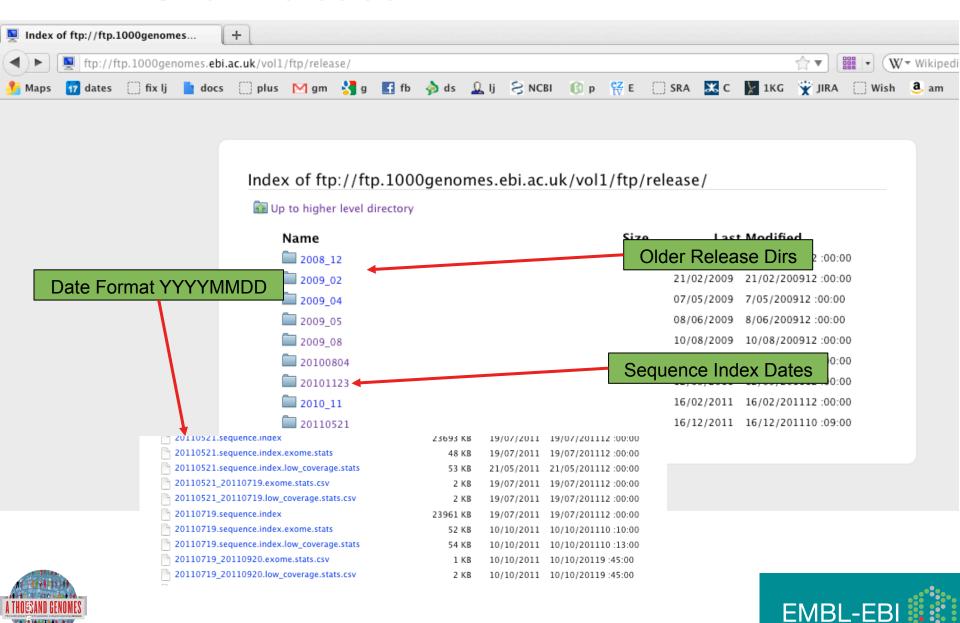



## The FTP Site: Data

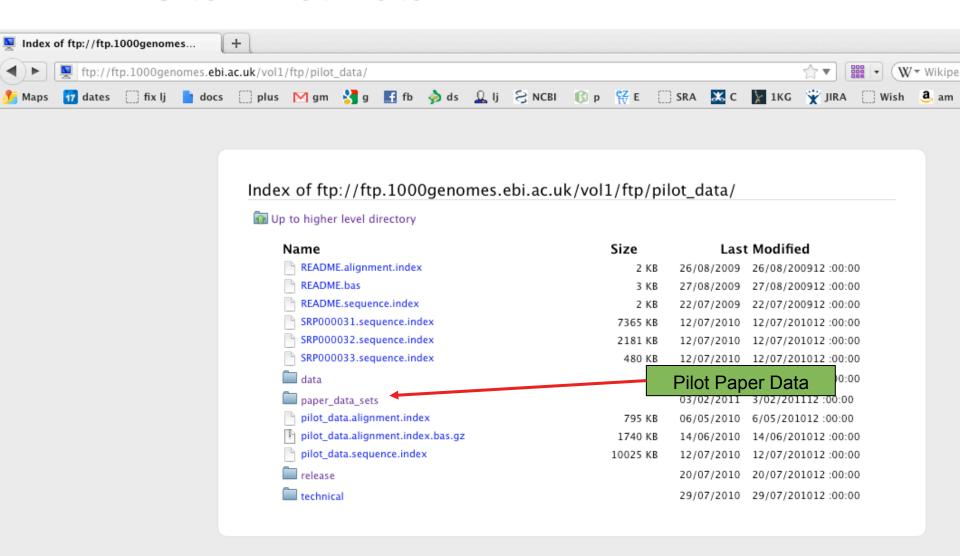







## FTP Site: Technical

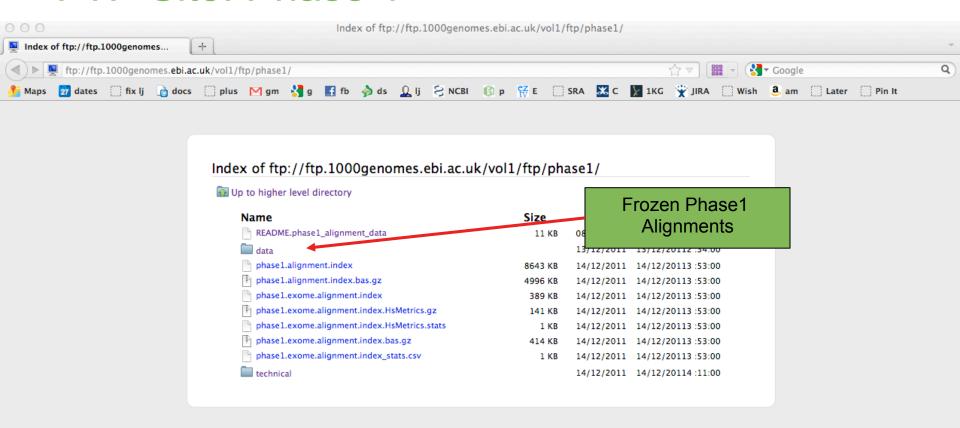







## FTP Site: Release



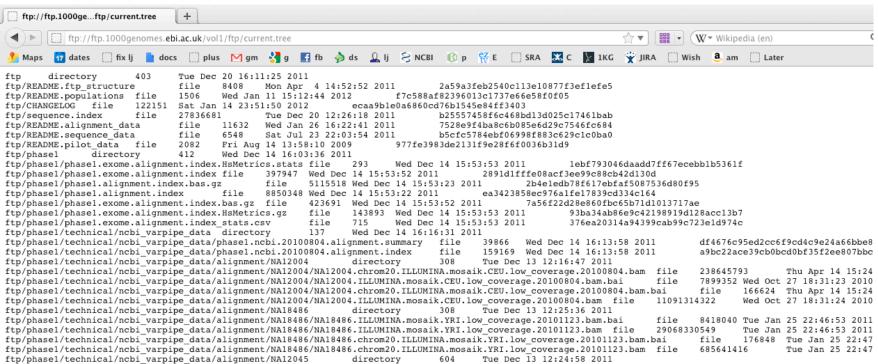

## FTP Site: Pilot Data







## FTP Site: Phase 1








# **Finding Data**

- Current.tree file
- ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/current.tree
- Current Tree is updated nightly so can be upto 24 hours out of date



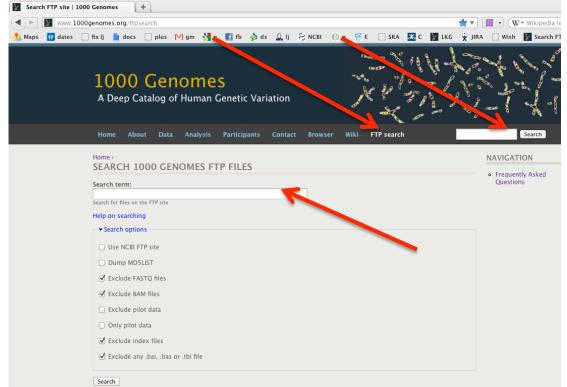




# Finding Data

Current tree file

| Description             | Example                                                                                       |
|-------------------------|-----------------------------------------------------------------------------------------------|
| Relative Path           | ftp/data/NA21091/alignment/<br>NA21091.chrom20.ILLUMINA.bwa.GIH.low_coverage.<br>20111114.bam |
| Type (file/directory)   | file                                                                                          |
| Size in bytes           | 297914382                                                                                     |
| Last Updated Time Stamp | Thu Jan 26 00:26:52 2012                                                                      |
| MD5 checksum            | 3fd679acc8c92cdc838aa0e5c1849d58                                                              |


- Relative path does not contain the complete ftp path
- ftp://ftp.1000genomes.ebi.ac.uk/vol1/
- ftp://ftp-trace.ncbi.nih.gov/1000genomes/





# **Finding Data**

- FTP search
- http://www.1000genomes.org/ftpsearch
- Search on the current tree file
- Provides full ftp paths and md5 checksums
- Every page also has a website search box







# **Data Slicing**

- All alignment and variant files are indexed so subsections can be downloaded remotely
- Use samtools to get subsections of bam files
  - samtools view http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data/ HG01375/alignment/ HG01375.mapped.ILLUMINA.bwa.CLM.low\_coverage. 20111114.bam 6:31833200-31834200
- Use tabix to get subsections of vcf files
  - tabix -h ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/working/20120131\_omni\_genotypes\_and\_intensities/
    Omni25\_genotypes\_2141\_samples.b37.vcf.gz
    6:31833200-31834200 | vcf-subset -c HG00737
- You can also use the web Data Slicer interface to do this
- http://browser.1000genomes.org/Homo\_sapiens/UserData/SelectSlice

# **Data Slicing**

- VCFtools provides some useful additional functionality on the command line including:
- vcf-compare, comparision and stats about two or more vcf files
- vcf-isec, creates an intersection of two or more vcf files
- vcf-subset, will subset a vcf file only retaining the specified individual columns
- vcf-stats, return statistics about a vcf file
- vcf-validator, will validate a particular



# **Data Availability**

- FTP site: ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/
  - Raw Data Files
- Web site: http://www.1000genomes.org
  - Release Announcements
  - Documentation
- Ensembl Style Browser: <a href="http://browser.1000genomes.org">http://browser.1000genomes.org</a>
  - Browse 1000 Genomes variants in Genomic Context
  - Variant Effect Predictor
  - Data Slicer
  - Other Tools





## **Exercises**

- 1. How many Omni VCF files can you find on the ftp site (Omni is a high throughput genotyping platform from Illumina on which all 1000 genomes samples are being genotyped)
- 2. Find the most recent Omni VCF file on GRCh37 from the 31st January 2012
- 3. Use the Website search box found in the top right hand corner of all pages to find the FAQ question about getting subsections of VCF files.
- 4. Which exome sample from 20110521 has the highest percentage of targets covered at 20x or greater using the 20110521.exome.alignment.index.HsMetrics.gz file and PCT TARGET BASES 20X column
- 5. Find the exome bam file for this sample
- 6. Get a slice of this exome bam file between 7:114173990-114175942 (exon of FOXP2)

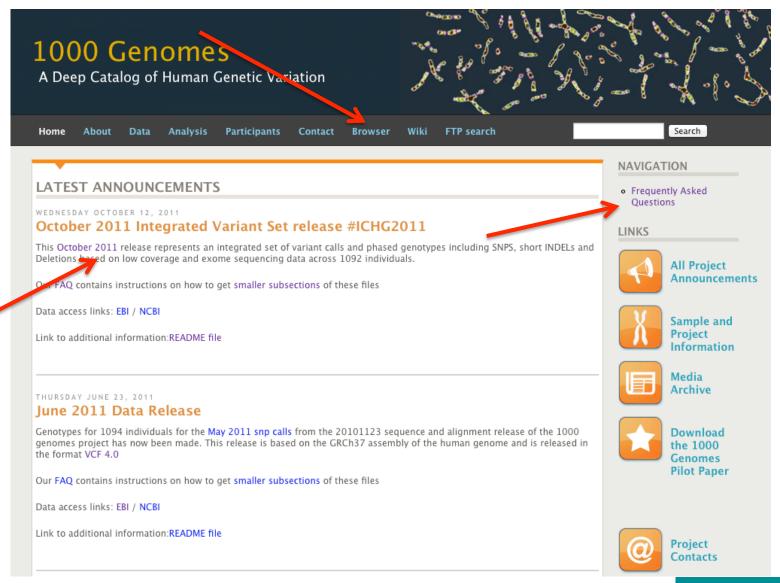


# Exercise Answers, Finding Data

- > wget <a href="ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/current.tree">ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/current.tree</a>
- > grep omni current.tree | cut -f1 | grep vcf | grep -v tbi | wc
- > 52
- > grep omni current.tree | cut -f1 | grep vcf | grep -v tbi | grep 20120131 | grep b37 | awk '{print "ftp://ftp. 1000genomes.ebi.ac.uk/vol1/"\$1}'
- > ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/working/ 20120131\_omni\_genotypes\_and\_intensities/ Omni25\_genotypes\_2141\_samples.b37.vcf.gz
- > zcat 20110521.exome.alignment.index.HsMetrics.gz | cut -f1,31 | sort -k2 -n | tail -n1
- > HG00737.mapped.illumina.mosaik.PUR.exome. 20110411.bam 0.932651



# Exercise Answers, Finding Data


- > grep HG00737.mapped.illumina.mosaik.PUR.exome.20110411.bam current.tree | grep -v "bam\." | awk '{print "ftp://ftp. 1000genomes.ebi.ac.uk/vol1/"\$1}'
- > ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase1/data/HG00737/exome\_alignment/HG00737.mapped.illumina.mosaik.PUR.exome. 20110411.bam
- >samtools view ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase1/data/HG00737/exome\_alignment/HG00737.mapped.illumina.mosaik.PUR.exome.20110411.bam 7:114173990-114175942 | tail -n1
- > SRR099984.44615561 83 7 114174990 65 76M = 114174660 -405
- GAACCATATTTGGTGTACATAGGCATAAAGAATTTTGCATAAAACCC CCTTGTGGGATTTTATTCATACATAGGTT
- SD@GIB>BFDDHDCDBBJCAFHHJBBDDEHDBFFDCHJB<CCC4IIHHI ECGCGGGAEEE@AEBH??@H@?CFDBS RG:Z:SRR099984 NM:i:0 OQ:Z:DE@DEE?
- EBEGEDEGFHHFGHHHHGHHFHHGHHDHHHHHHHHHDHHDHHGGGHH EMBL-EB

# The 1000 Genomes Browser http://browser.1000genomes.org





# http://www.1000genomes.org







## 1000 Genomes

A Deep Catalog of Human Genetic Variation





e.g. gene BRCA2 or Chromosome 6:133098746-133108745

## Start Browsing 1000 Genomes data



Browse Human → GRCh37

#### Protein variations →

View the consequences of sequence variation at the level of each protein in the genome.

#### Individual genotypes →

Show different individual's genotype, for a variant.

#### **Browser update September 2011**

based on interim Main project data from 20101123 for 1094 individuals and ensembl release 63. The data can be found on the ftp site.

Please see www.1000genomes.org for more information about the data presented here and instructions for downloading the complete data set.

View sample data

1000 Genomes release 10 - October 2011 © EBI

#### The 1000 Genomes Browser

#### Ensembl-based browser provides early access to 1000genomes data

In order to facilitate immediate analysis of the 1000 Genomes Project data by the whole scientific community, this browser (based on Ensembl) integrates the SNP calls from an interim release 20101123. This data has be submitted to dbSNP, and once rsid's have been allocated, will be absorbed into the UCSC and Ensembl browsers according to their respective release cycles. Until that point any non rs SNP id's on this site are temporary and will NOT be maintained.

#### Links



#### 1000 Genomes →

More information about the 1000 Genomes Project on the 1000 genomes main



#### Pilot browser →

This browser is based on Ensembl release 60 and represents the variant set analysed as part of A map of human genome variation from population-scale sequencing, Nature 467, 1061.1073.



#### Tutorial →

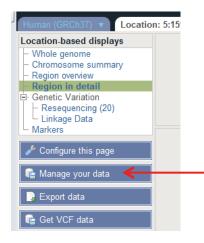
The 1000 Genomes Browser Tutorial.

The 1000 Genomes Project is an international collaborative project described at www.10 Ogenomes.org.

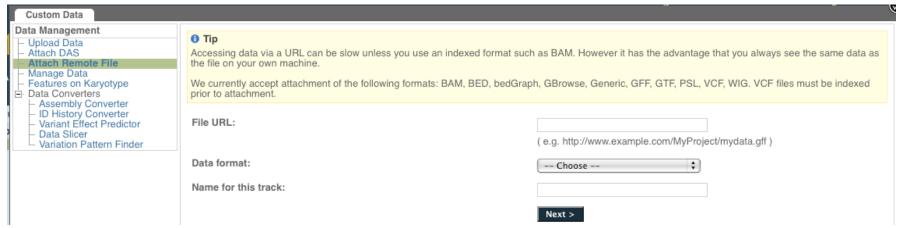
The 100 Genomes Browser is based on Ensembl web code.

mbl is a joint project of EMBL-EBI and the Wellcome Trust Sanger Institute




sanger

About 1000 Genomes I Contact Us I Help




http://browser.1000genomes.org

# File upload to view with 1000 Genomes data

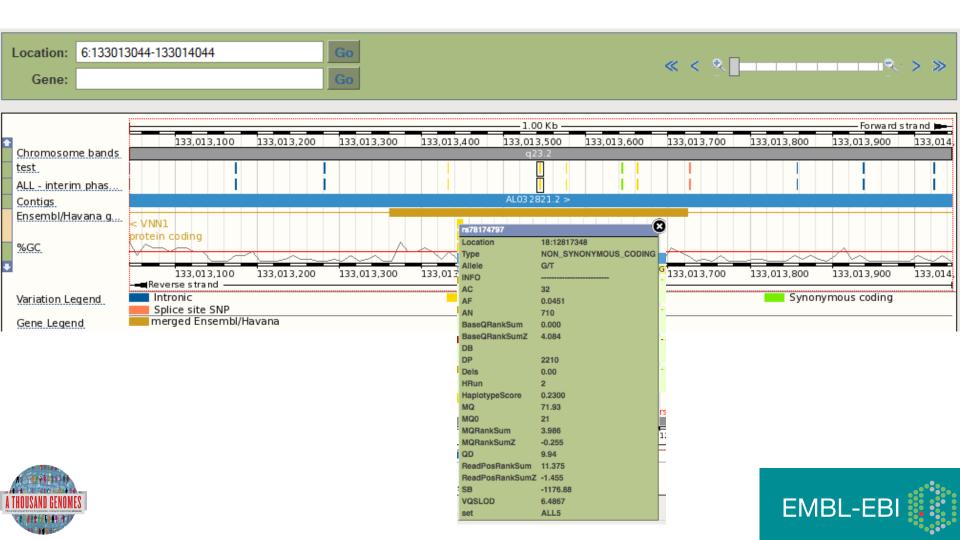


Manage your data



- Supports popular file types:
  - BAM, BED, bedGraph, BigWig, GBrowse, Generic, GFF, GTF, PSL, VCF\*, WIG

**EMBL-EBI** 


\* VCF must be indexed

# Uploaded VCF

## Example:

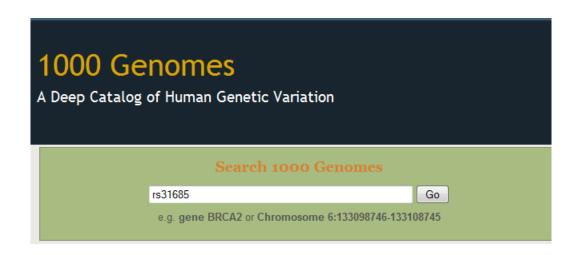
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20110521/

ALL.wgs.phase1\_release\_v2.20101123.snps\_indels\_sv.sites.vcf.gz

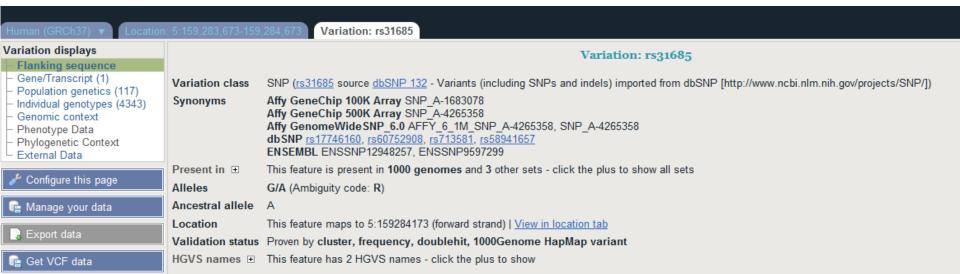


# **Uploaded BAM**

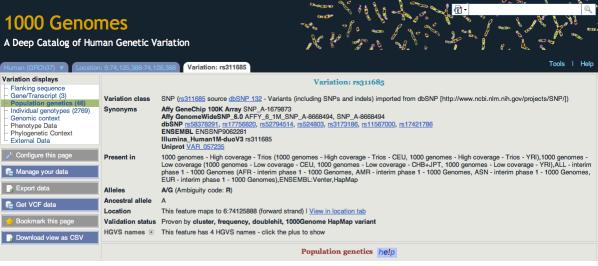
## Example:


http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data/HG01375/alignment/ HG01375.mapped.ILLUMINA.bwa.CLM.low\_coverage.20111114.bam









## Start again- search for a variation (rs31685)



The Variation tab- left hand links take you to more information

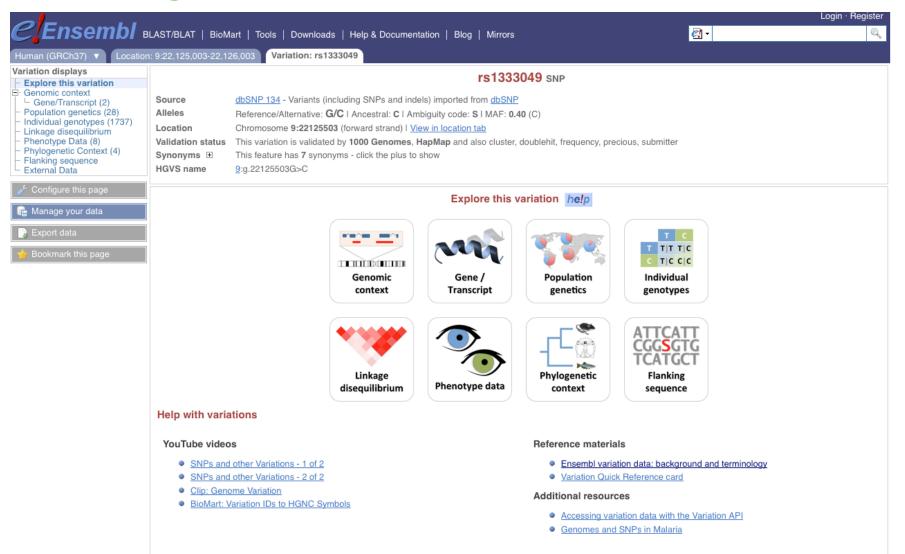


### Population





# 1000 genomes alleles frequencies AFR A: 69% G: 31% ASN A: 42% A: 42% A: 42% A: 45% G: 55% ASN ASN A: 42% A: 42% A: 45% A: 69% A: 45% A: 69% A:


#### 1000 genomes

| Show/hide columns |           |              |                  |                  | Filter           | <b>₹</b> |
|-------------------|-----------|--------------|------------------|------------------|------------------|----------|
| Population        | Alleles A | Alleles<br>G | Genotypes<br>AlA | Genotypes<br>AIG | Genotypes<br>GIG | Count    |
| 1000GENOMES:AFR   | 0.689     | 0.311        | 0.463            | 0.451            | 0.085            | 114      |
| 1000GENOMES:ALL   | 0.507     | 0.493        | 0.269            | 0.477            | 0.254            | 294      |
| 1000GENOMES:AMR   | 0.539     | 0.461        | 0.293            | 0.492            | 0.215            | 53       |
| 1000GENOMES:ASN   | 0.446     | 0.554        | 0.199            | 0.493            | 0.308            | 57       |
| 1000GENOMES:EUR   | 0.421     | 0.579        | 0.184            | 0.475            | 0.341            | 70       |

#### 1000 genomes pilot

| Show/hide columns                              |             |             |              | Filter       |       |
|------------------------------------------------|-------------|-------------|--------------|--------------|-------|
| Population                                     | ssID        | Submitter   | Alleles<br>A | Alleles<br>G | Count |
| 1000GENOMES:pilot 1 CEU low coverage panel     | ss233534774 | 1000GENOMES | 0.458        | 0.542        |       |
| 1000GENOMES:pilot 1_CHB+JPT_low_coverage_panel | ss240577229 | 1000GENOMES | 0.400        | 0.600        |       |
| 1000GENOMES:pilot 1 YRI low coverage panel     | ss222470667 | 1000GENOMES | 0.729        | 0.271        |       |

## Coming Soon Ensembl 65







## 1000 Genomes Tools





#### 1000 Genomes

A Deep Catalog of Human Genetic Variation



Tools | Help



e.g. gene BRCA2 or Chromosome 6:133098746-133108745

#### Start Browsing 1000 Genomes data



Browse Human → GRCh37

#### Protein variations →

View the consequences of sequence variation at the level of each protein in the genome.

#### Individual genotypes →

Show different individual's genotype, for a variant.

#### **Browser update September 2011**

based on interim Main project data from 20101123 for 1094 individuals and ensembl release 63. The data can be found on the ftp site.

Please see www.1000genomes.org for more information about the data presented here and instructions for downloading the complete data set.

View sample data

#### The 1000 Genomes Browser

#### Ensembl-based browser provides early access to 1000genomes data

In order to facilitate immediate analysis of the 1000 Genomes Project data by the whole scientific community, this browser (based on Ensembl) integrates the SNP calls from an interim release 20101123. This data has be submitted to dbSNP, and once rsid's have been allocated, will be absorbed into the UCSC and Ensembl browsers according to their respective release cycles. Until that point any non rs SNP id's on this site are temporary and will NOT be maintained.

#### Links



#### 1000 Genomes →

More information about the 1000 Genomes Project on the 1000 genomes main



#### Pilot browser →

This browser is based on Ensembl release 60 and represents the variant set analysed as part of A map of human genome variation from population-scale sequencing . Nature 467 .1061.1073.



#### Tutorial →

The 1000 Genomes Browser Tutorial.

The 1000 Genomes Project is an international collaborative project described at www.1000genomes.org.

The 1000 Genomes Browser is based on Ensembl web code.



Ensembl is a joint project of EMBL-EBI and the Wellcome Trust Sanger Institute

sanger

1000 Genomes release 10 - October 2011 © EBI

About 1000 Genomes I Contact Us I Help





## Tools page

### 1000 Genomes

A Deep Catalog of Human Genetic Variation



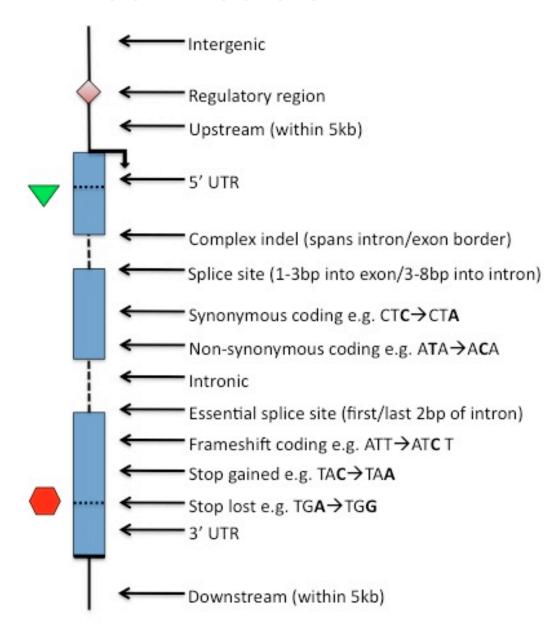
We provide a number of ready-made tools for processing your data. At the moment, small datasets can be uploaded to our servers and processed online; for larger datasets, we provide an API script that can be downloaded (you will also need to install our Perl API to use these).

In the near future we aim to offer an intermediate service, whereby medium-to-large data sets can be submitted to a queue, similar to BLAST.

#### Currently available:

| Tool                     | Description                                                                                                                                                                                                                                                                                                                                        |                                    |                   |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-------------------|
| Assembly converter       | Map your data to the current assembly. Accepted file formats: <a href="GFF">GFF</a> , <a href="GTF">BED</a> , <a href="PSL">PSL</a> N.B. Export is currently in GFF only                                                                                                                                                                           | Online version                     | <u>API script</u> |
| ID History converter     | Convert a set of Ensembl IDs from a previous release into their current equivalents.                                                                                                                                                                                                                                                               | Online version<br>(max 30 ids)     | <u>API script</u> |
| Variant Effect Predictor | (Formerly SNP Effect Predictor). Upload a set of SNPs in our <u>standard format</u> and export a file containing consequence types. Uploaded tracks can also be viewed on Location pages.                                                                                                                                                          | Online version<br>(max 750 SNPs)   | API script        |
| Data Slicer              | Get a subset of data from a BAM or VCF file.                                                                                                                                                                                                                                                                                                       | Online version<br>(max 10K region) |                   |
| Variation Pattern Finder | Rentify variation patterns in a chromosomal region of interest for different individuals. On, variations with functional significance such non-synonymous coding, splice site will be reported by the tool. Click <a href="here">here</a> for more extensive documentation.                                                                        | Online version                     | API script        |
| VCF to PED converter     | The VCF to PED converter allows users to parse a vcf file to create a linkage pedigree file (ped) and a marker information file, which together may be loaded into id visualization took like Haploview. Click <a href="https://example.com/here-for-more-extensive-documentation.">https://example.com/here-for-more-extensive-documentation.</a> | Online version                     | <u>API script</u> |
|                          |                                                                                                                                                                                                                                                                                                                                                    |                                    |                   |






### Variant Effect Predictor

- Predicts Functional Consequences of Variants
- Both Web Front end and API script
- Can provide
  - sift/polyphen/condel consequences
  - Refseq gene names
  - HGVS output
- Can run from a cache as well as Database
- Convert from one input format to another
- Script available for download from:
- ftp://ftp.ensembl.org/pub/misc-scripts/
   Variant effect predictor/
- http://browser.1000genomes.org/Homo\_sapiens/
  - UserData/UploadVariations



## Variant Effect Predictor







### Variant Effect Predictor

- perl variant\_effect\_predictor.pl -input
   6\_381831625\_3184704.vcf -sift p -polyphen p check\_existing
- less variant\_effect\_output.txt

```
#Uploaded variation Location Allele Gene Feature Feature type Consequence
                                          Amino acids Codons Exi
cDNA position CDS position Protein position
sting variation
              Extra
rs138094825 6:31831667 A ENSG00000204385 ENST00000414427 Transcript
DOWNSTREAM
                                   rs138094825
rs138094825 6:31831667 A ENSG00000204385 ENST00000229729 Transcript
INTRONIC
                                rs138094825
6 31832657 C/T 6:31832657 T
                               ENSG00000204385 ENST00000229729
Transcript NON_SYNONYMOUS_CODING 1883 1862 621
                                                      R/H
                                                            cGc/cAc -
PolyPhen=possibly damaging;SIFT=deleterious
```





## Variation Effect Predictor Output

| (      | 3_31833357_C/T | 6:31833357        | Т    | ENSG00000204  | 386 EN | NST00000480384 |      | Transcript  |         | UPSTREA      | M              | -         | -    | -         |
|--------|----------------|-------------------|------|---------------|--------|----------------|------|-------------|---------|--------------|----------------|-----------|------|-----------|
| (      | 3_31833357_C/T | 6:31833357        | Т    | ENSG00000204  | 386 EN | NST00000491768 |      | Transcript  |         | UPSTREA      | M              | -         | -    | -         |
| (      | 3_31833357_C/T | 6:31833357        | Т    | ENSG00000204  | 386 EN | NST00000375631 |      | Transcript  |         | UPSTREA      | M              | -         | -    | -         |
| 16     | 6_31833357_C/T | 6:31833357        | Т    | ENSG00000204  | 386 EI | NST00000479533 |      | Transcript  |         | UPSTREA      | М              | -         | -    | -         |
| 16     | 3_31833357_C/T | 6:31833357        | Т    | ENSG00000204  | 385 EI | NST00000229729 |      | Transcript  | NON_S   | YNONYMOU     | S_CODING 1     | 1625      | 1604 | 53!       |
|        |                |                   |      |               |        |                |      |             |         |              |                |           |      |           |
| (      | 5_31833357_C/T | 6:31833357        | Т    | ENSG00000204  | 385 El | NST00000375562 |      | Transcript  | NON_S   | YNONYMOU     | S_CODING 1     | 1544      | 1478 | 490       |
| - 11,  | 04000057 0/5   | 0.01000057        | _    | TNIC COCCOCCO | 205 5  | NCT00000F44670 |      | Topografias | NIONI C | VNIONIVNIOLI | IC CODING      | 070       | 1070 | 454       |
|        | 6_31833357_C/T | <u>6:31833357</u> | 1    | ENSG00000204  | 385 EI | NST00000544672 |      | Transcript  | NON_5   | YNONYMOU     | IS_CODING      | 1673      | 1376 | 459       |
| 1      | 6_31833357_C/T | 6:31833357        | Т    | ENSG00000204  | 385 EI | NST00000487680 | )    | Transcript  |         | UPSTREA      | М              |           | _    | _         |
|        |                | 6:31833357        |      |               |        | NST00000414427 |      | Transcript  |         | DOWNSTRE     |                |           | _    |           |
|        | _              | 6:31833357        | -    |               |        | NST00000479777 |      | Transcript  |         | DOWNSTRE     |                |           |      | _         |
|        |                |                   | -    |               |        |                |      |             |         |              |                | -         | -    | -         |
| 6      | 6_31833357_C/T | 6:31833357        | Т    | ENSG00000204  | 385 E  | NST00000475563 |      | Transcript  |         | DOWNSTRE     | AM             | -         | -    | -         |
| 04386  | ENST0000049176 | 8 Transcript      |      | UPSTREAM      |        | -              | -    | -           | -       | -            | 1KG_6_31833357 | -         |      |           |
| 04386  | ENST0000037563 | 1 Transcript      |      | UPSTREAM      |        | -              | -    | -           | -       | -            | 1KG_6_31833357 | -         |      |           |
| 04386  | ENST0000047953 | 3 Transcript      |      | UPSTREAM      |        | -              | -    | -           | -       | -            | 1KG_6_31833357 | -         |      |           |
| 04385  | ENST0000022972 | 9 Transcript      | NON. | _SYNONYMOUS_  | CODIN  | G 1625         | 1604 | 535         | R/H     | cGc/cAc      | 1KG_6_31833357 |           |      |           |
|        |                |                   |      |               |        |                |      |             |         |              |                | •         |      | _damaging |
| 04385  | ENST0000037556 | 2 Transcript      | NON. | _SYNONYMOUS_  | CODIN  | G 1544         | 1478 | 493         | R/H     | cGc/cAc      | 1KG_6_31833357 |           |      | damaging  |
| 04385  | ENST0000054467 | 2 Transcript      | NON  | SYNONYMOUS    | CODIN  | G 1673         | 1376 | 459         | R/H     | cGc/cAc      | 1KG_6_31833357 | SIFT=dele |      | _uamaging |
| - 1000 |                |                   |      |               |        |                |      | .50         |         | 000010       |                |           |      | _damaging |
| 04385  | ENST0000048768 | O Transcript      |      | UPSTREAM      |        | -              | -    | -           | -       | -            | 1KG_6_31833357 | -         |      |           |
| 04385  | ENST0000041442 | 7 Transcript      |      | DOWNSTREAM    | 1      | -              | -    | -           | -       | -            | 1KG_6_31833357 | -         |      |           |
| 04385  | ENST0000047977 | 7 Transcript      |      | DOWNSTREAM    | 1      | -              | -    | -           | -       | -            | 1KG_6_31833357 | -         |      |           |



0204385 ENST00000475563

Transcript



### Variation Pattern Finder

- Remote or local tabix indexed VCF input
  - Web version must use remote files
- Discovers patterns of Shared Inheritance
- Variants with functional consequences considered by default
- Web output with CSV and Excel downloads
- http://browser.1000genomes.org/Homo\_sapiens/ UserData/VariationsMapVCF



### Variation Pattern Finder

perl variant\_pattern\_finder.pl -vcf ftp://ftp.
 1000genomes.ebi.ac.uk/vol1/ftp/release/20110521/
 ALL.chr6.phase1\_integrated\_calls.
 20101123.snps\_indels\_svs.genotypes.vcf.gz sample\_panel\_file ftp://ftp.1000genomes.ebi.ac.uk/vol1/
 ftp/release/20110521/phase1\_integrated\_calls.
 20101123.ALL.panel -region 6:31830969-31846823 expand





## Variation Pattern Finder Output

| freq |      | 6:31833647[T]                                                                                                             | 6:31833660_rs6915800[G]                                                                                                                                              |        | samples                                 |
|------|------|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------------------|
| псч  |      | 0.51055047[1]                                                                                                             | 0.51655000_130515000[0]                                                                                                                                              |        | Samples                                 |
| freq |      | ENST00000414427-<br>SPLICE_SITE[],ENST0000054<br>4672-<br>SPLICE_SITE[],ENST0000022<br>9729-<br>SPLICE_SITE[],ENST0000037 | ENST00000414427- NON_SYNONYMOUS_CODING C],ENST00000229729- NON_SYNONYMOUS_CODING C],ENST00000544672- NON_SYNONYMOUS_CODING C],ENST00000375562- NON_SYNONYMOUS_CODING | G[R/   | samples                                 |
|      | 0.73 | REF REF                                                                                                                   | G A                                                                                                                                                                  | YRI(3) | NA18933, NA19149, NA19098 and 0 others. |
|      | 0.27 | REF REF                                                                                                                   | A G                                                                                                                                                                  | YRI(2) | NA19146, NA19198                        |
|      | 0.18 | REF REF                                                                                                                   | A A                                                                                                                                                                  | LWK(1) | NA19372                                 |
|      | 0.09 | C T                                                                                                                       | REF REF                                                                                                                                                              | CHB(1) | NA18592                                 |





## Variation Pattern Finder Output

#### Variation Pattern Finder

Export data: CSV Excel

#### Go to collapsed view

| CEU                             | CIFreq  |          | rs12661281:T/A                               | 6:31843711:C/T                 | 6:31845340:C/T                 | rs2075798:C/A                    |
|---------------------------------|---------|----------|----------------------------------------------|--------------------------------|--------------------------------|----------------------------------|
|                                 |         |          | 6:31842598                                   | 6:31843711                     | 6:31845340                     | 6:31846741                       |
|                                 |         | DING:N/S | ENST00000229729<br>NON_SYNONYMOUS_CODING:D/V | ENST00000229729<br>SPLICE_SITE | ENST00000544672<br>SPLICE_SITE | ENST00000229729<br>NON_SYNONYMOU |
|                                 |         | DING:N/S | ENST00000544672<br>NON_SYNONYMOUS_CODING:D/V | ENST00000375562<br>SPLICE_SITE | ENST00000544672<br>5PRIME_UTR  | ENST00000375562<br>NON_SYNONYMOU |
|                                 |         | DING:N/S | ENST00000414427<br>NON_SYNONYMOUS_CODING:D/V | ENST00000544672<br>SPLICE_SITE |                                | ENST00000414427<br>NON_SYNONYMOU |
|                                 |         |          |                                              | ENST00000414427<br>SPLICE_SITE |                                |                                  |
|                                 |         |          |                                              | ENST00000465707<br>SPLICE_SITE |                                |                                  |
|                                 |         |          |                                              | ENST00000462671<br>SPLICE_SITE |                                |                                  |
|                                 |         |          |                                              |                                |                                |                                  |
| NA12872, NA07000 and 1 other(s) | N 0.032 |          | TIA                                          | CIC                            | CIC                            | CIC                              |
| NA12874, NA12717                | N 0.028 |          | TIT                                          | CIC                            | CIC                            | AIC                              |
| NA07346                         | N 0.027 |          | TIT                                          | CIC                            | CIC                            | CIA                              |
|                                 | N 0.027 |          | TIT                                          | CIC                            | CIC                            | CIC                              |
| NA10851, NA12342 and 5 other(s) | N 0.024 |          | AIT                                          | CIC                            | CIC                            | CIC                              |
| NA12058, NA12273 and 1 other(s) | N 0.020 |          | AIA                                          | CIC                            | CIC                            | CIC                              |
|                                 | N 0.018 |          | TIT                                          | CIC                            | CIC                            | CIC                              |
|                                 | N 0.015 |          | AIT                                          | CIC                            | CIC                            | CIA                              |
|                                 | N 0.014 |          | TIT                                          | CIC                            | CIC                            | AIA                              |
|                                 | N 0.013 |          | TIT                                          | CIC                            | CIC                            | CIC                              |
| NA10847                         | N 0.011 |          | TIA                                          | CIC                            | CIC                            | AIC                              |
| NA12286, NA11892 and 2 other(s) | N 0.009 |          | TIT                                          | CIC                            | CIC                            | CIC                              |





### VCF to PED

- LD Visualization tools like Haploview require PED files
- VCF to PED converts VCF to PED
- Will a file divide by individual or population
- http://browser.1000genomes.org/Homo\_sapiens/ UserData/Haploview





### VCF to PED

- perl vcf\_to\_ped\_convert.pl -vcf ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20110521/ALL.chr6.phase1\_integrated\_calls.
   20101123.snps\_indels\_svs.genotypes.vcf.gz -sample\_panel\_file ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20110521/phase1\_integrated\_calls.20101123.ALL.panel -region 6:31830969-31846823 -population CEU
- Output should be two files
- 6\_31830969-31846823.info
- 6\_31830969-31846823.ped



## Haplotype example input

### java –jar Haploview.jar


| ○ ○ ○ Welcome to HaploView                             |                                  |                    |                |  |  |  |  |  |  |
|--------------------------------------------------------|----------------------------------|--------------------|----------------|--|--|--|--|--|--|
| Linkage Format                                         | Haps Format                      | HapMap Format      | HapMap PHASE   |  |  |  |  |  |  |
|                                                        |                                  |                    |                |  |  |  |  |  |  |
| Dat                                                    | ta File: wnloads/6               | _31830969-31846823 | .ped Browse    |  |  |  |  |  |  |
| Locus Informatio                                       | n File: wnloads/6                | _31830969-31846823 | .info Browse   |  |  |  |  |  |  |
|                                                        | X Chromosome Do association test |                    |                |  |  |  |  |  |  |
|                                                        | Family trio data                 |                    |                |  |  |  |  |  |  |
|                                                        | <ul><li>Standard</li></ul>       | TDT O ParenTDT     |                |  |  |  |  |  |  |
| Test list file (opt                                    | ional):                          |                    | Browse         |  |  |  |  |  |  |
|                                                        |                                  |                    |                |  |  |  |  |  |  |
| Ignore pairwise comparisons of markers > 500 kb apart. |                                  |                    |                |  |  |  |  |  |  |
| Exclude individuals with > 50 % missing genotypes.     |                                  |                    |                |  |  |  |  |  |  |
|                                                        | ОК                               | Cancel             | Proxy Settings |  |  |  |  |  |  |





## Haploview

### haploview





http://www.broadinstitute.org/scientific-community/science/programs/medical-and-population genetics/haploview

### Access to backend Ensembl databases

- Public MySQL database at
  - mysql-db.1000genomes.org port 4272
- Full programmatic access with Ensembl API
  - The 1000 Genomes Pilot uses Ensembl v60 databases and the NCBI36 assembly (this is frozen)
  - The 1000 Genomes main project currently uses Ensembl v63 databases
- http://jun2011.archive.ensembl.org/info/docs/api/variation/ index.html
- http://www.ensembl.org/info/docs/api/variation/index.html
- http://www.1000genomes.org/node/517





### **Amazon Web Service Cloud**

- 1000 Genomes Alignments and Variant files are available in AWS
- AMI image available to run 1000 Genomes Tutorial
- http://www.1000genomes.org/using-1000-genomes-dataamazon-web-service-cloud



## **Exercises, Command Line Tools**

- 7. Get the 7:114304000-114305000 (FoxP2 exon) section of the 20110521 release chr 7 genotypes file
- 8. Use vcftools vcf-stats to specify which SNP transition happens most in this section. You should look at the statistics for all variants/samples.
- 9. Use this piece with tools, the variant effect predictor, the vcf pattern finder
- 10. Are there any snps with deleterious sift/polyphen consequences?
- 11. What is the most common pattern of variation in this region?
- 12. Use the vcf to ped script with 6:31830700-31840700
- 13. How many different haplotype blocks does the section contain?





## Exercise Answers, Command Line Tools

> tabix —h ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20110521/

ALL.chr7.phase1\_release\_v3.20101123.snps\_indels\_svs.ge notypes.vcf.gz 7:114304000-114305000 > 20110521.vcf

> vcf-stats 20110521.vcf

```
'all' => {
         'snp count' => 16,
         'count' => 16.
         'snp' => {
                  'A>C' => 1.
                  'A>T' => 1.
                  'G>T' => 1.
                  'A>G' => 2.
                  'T>G' => 1.
                  'T>C' => 2.
                     'C>T' => 3,
                     'G>A' => 5
              'nalt 1' => 16
```





## Exercise Answers, Command Line Tools

- >perl variant\_effect\_predictor.pl -input ~/20110521.vcf -sift p
  -polyphen p --force\_overwrite
  > grep SIFT variant\_effect\_output.txt
  > rs182138317 7:114304331 A
  ENSG00000128573 ENST00000393489 Transcript
  NON\_SYNONYMOUS\_CODING 1949 1567 523 A/T
- PolyPhen=possibly\_damaging;SIFT=deleterious



Gcc/Acc -



## Exercise Answers, Command Line Tool

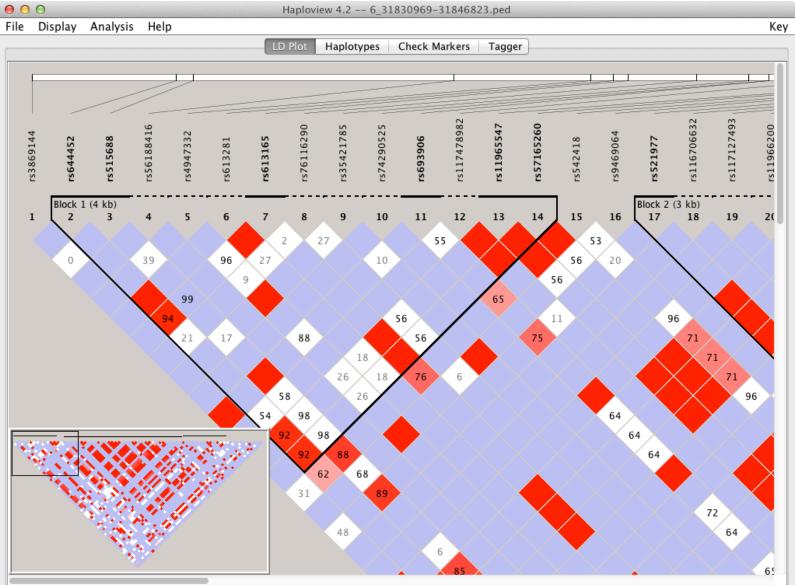
> perl variant\_pattern\_finder.pl -vcf ~/20110521.vcf -sample ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20110521/phase1\_integrated\_calls.20101123.ALL.panel -region 7:114304000-114305000

This produces a tsv file which can be view in a spreadsheet program

7:114304563\_rs1378771[C] 7:114304630\_rs1378772[A] 7:114304969\_rs2396765[T]

> 14.38 - C|T - A|T - - - T|C TSI(30)

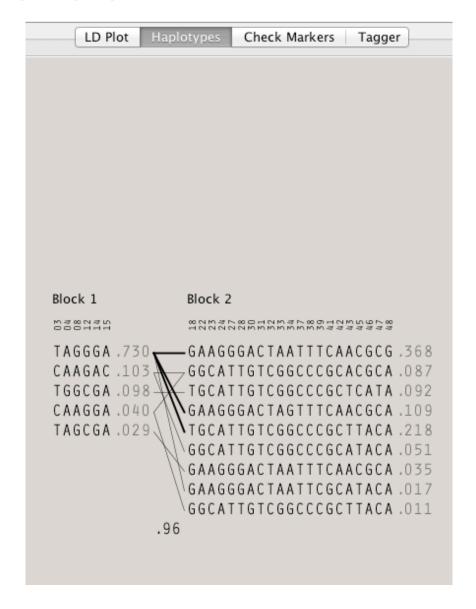





### **Exercise Answers: Command Line Tools**

- > perl vcf\_to\_ped\_convert.pl -vcf 20110521.vcf -sample ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20110521/phase1\_integrated\_calls.20101123.ALL.panel -region 6:31830700-31840700 -population CEU
- > Is ./
- > 6 31830700-31840700.info
- > 6\_31830700-31840700.ped




## **Exercise Answers**







### **Exercise Answers**







## **Data Availability**

- FTP site: ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/
  - Raw Data Files
- Web site: http://www.1000genomes.org
  - Release Announcements
  - Documentation
- Ensembl Style Browser: <a href="http://browser.1000genomes.org">http://browser.1000genomes.org</a>
  - Browse 1000 Genomes variants in Genomic Context
  - Variant Effect Predictor
  - Data Slicer
  - Other Tools





### **Announcements**

- http://1000genomes.org
- 1000announce@1000genomes.org
- http://www.1000genomes.org/1000-genomesannoucement-mailing-list
- http://www.1000genomes.org/announcements/rss.xml
- http://twitter.com/#!/1000genomes





## Questions

Please send any future questions about this presentation and any other material on our website to info@1000genomes.org



http://www.1000genomes.org/using-1000-genomes-data





## 1000 Genomes Community Meeting

- University of Michigan, Ann Arbor on the 12th and 13th of July 2012
- Showcase Advances made by the Project
- Generate Discussion about the next round of Human Genome Sequencing
- Registration closes May 15th
- http://1000gconference.sph.umich.edu/





### **Thanks**

- The 1000 Genomes Project Consortium
- Paul Flicek
- Richard Smith
- Holly Zheng Bradley
- Ian Streeter
- David Richardson







## Questionaire

http://goo.gl/VxK2c



