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1000 Genomes project goals!
•  A public database of essentially all 

SNPs, indels, and detectable CNVs with 
allele frequency >1% in each of multiple 
human population samples!

•  Pioneer and evaluate methods for:!
–  Generating data from next-generation sequencing platforms!
–  Exchanging and combining data and analytical methods!
–  Discovering and genotyping of SNPs, indels, and CNVs from 

next-generation DNA sequencing data!
–  Imputation with and from next generation sequencing data!

David Altshuler	





Strategy:	
  use	
  next-­‐genera=on	
  DNA	
  
sequencing	
  to	
  discover	
  common	
  varia=on	
  

•  Collect	
  shotgun	
  DNA	
  sequencing	
  reads	
  
using	
  next-­‐genera=on	
  DNA	
  sequencers	
  
– Only	
  shallow	
  (4x)	
  coverage	
  per	
  sample	
  

•  Map	
  the	
  reads	
  to	
  the	
  reference	
  genome	
  
•  Detect	
  variants	
  based	
  on	
  the	
  mul=ple	
  
alignment	
  of	
  reads	
  
– Sta=s=cal	
  analysis	
  across	
  all	
  samples	
  together	
  

5 years ago little of this could be done 
efficiently, accurately or at scale	





The 1000 Genomes Project is a 
trilogy in four parts	
  

Pilot	
  (2008-­‐2010,	
  published	
  Nature	
  Oct.	
  2010):	
  
•  Deep	
  sequence	
  for	
  two	
  trios	
  (CEU	
  and	
  YRI)	
  
•  Low	
  coverage	
  (~2x)	
  of	
  180	
  individuals	
  in	
  3	
  popula=ons	
  
•  Capture	
  of	
  1000	
  genes	
  in	
  ~700	
  individuals	
  

Phase	
  1	
  (2010-­‐2012,	
  published	
  Nature	
  Nov.	
  2012)	
  
•  1100	
  individuals	
  with	
  ~3x	
  low-­‐coverage,	
  many	
  with	
  exomes	
  
•  OMNI	
  2.5M	
  genotyping	
  
•  Paper	
  published	
  last	
  week	
  in	
  Nature	
  

Phase	
  2+3	
  (2012-­‐2013,	
  publish	
  final	
  Paper	
  TBD)	
  
•  ~2500	
  samples	
  at	
  >4X	
  coverage,	
  all	
  with	
  exomes	
  and	
  many	
  genotyping	
  arrays	
  
•  High	
  coverage	
  Complete	
  Genomics	
  data	
  for	
  50	
  samples	
  (with	
  plans	
  for	
  500)	
  
•  Total	
  data	
  size	
  of	
  25-­‐30	
  =mes	
  from	
  original	
  plan,	
  2.5	
  more	
  samples	
  in	
  more	
  

popula=ons	
  

4	





Phase	
  I	
  complete;	
  paper	
  just	
  published	
  

ARTICLE
doi:10.1038/nature11632

An integrated map of genetic variation
from 1,092 human genomes
The 1000 Genomes Project Consortium*

By characterizing the geographic and functional spectrum of human genetic variation, the 1000 Genomes Project aims to
build a resource to help to understand the genetic contribution to disease. Here we describe the genomes of 1,092
individuals from 14 populations, constructed using a combination of low-coverage whole-genome and exome
sequencing. By developing methods to integrate information across several algorithms and diverse data sources, we
provide a validated haplotype map of 38 million single nucleotide polymorphisms, 1.4 million short insertions and
deletions, and more than 14,000 larger deletions. We show that individuals from different populations carry different
profiles of rare and common variants, and that low-frequency variants show substantial geographic differentiation,
which is further increased by the action of purifying selection. We show that evolutionary conservation and coding
consequence are key determinants of the strength of purifying selection, that rare-variant load varies substantially
across biological pathways, and that each individual contains hundreds of rare non-coding variants at conserved sites,
such as motif-disrupting changes in transcription-factor-binding sites. This resource, which captures up to 98% of
accessible single nucleotide polymorphisms at a frequency of 1% in related populations, enables analysis of common and
low-frequency variants in individuals from diverse, including admixed, populations.

Recent efforts to map human genetic variation by sequencing exomes1

and whole genomes2–4 have characterized the vast majority of com-
mon single nucleotide polymorphisms (SNPs) and many structural
variants across the genome. However, although more than 95% of
common (.5% frequency) variants were discovered in the pilot phase
of the 1000 Genomes Project, lower-frequency variants, particularly
those outside the coding exome, remain poorly characterized. Low-fre-
quency variants are enriched for potentially functional mutations, for
example, protein-changing variants, under weak purifying selection1,5,6.
Furthermore, because low-frequency variants tend to be recent in
origin, they exhibit increased levels of population differentiation6–8.
Characterizing such variants, for both point mutations and struc-
tural changes, across a range of populations is thus likely to identify
many variants of functional importance and is crucial for interpreting

individual genome sequences, to help separate shared variants from
those private to families, for example.

We now report on the genomes of 1,092 individuals sampled from
14 populations drawn from Europe, East Asia, sub-Saharan Africa
and the Americas (Supplementary Figs 1 and 2), analysed through a
combination of low-coverage (2–63) whole-genome sequence data,
targeted deep (50–1003) exome sequence data and dense SNP geno-
type data (Table 1 and Supplementary Tables 1–3). This design was
shown by the pilot phase2 to be powerful and cost-effective in dis-
covering and genotyping all but the rarest SNP and short insertion
and deletion (indel) variants. Here, the approach was augmented with
statistical methods for selecting higher quality variant calls from can-
didates obtained using multiple algorithms, and to integrate SNP,
indel and larger structural variants within a single framework (see

Table 1 | Summary of 1000 Genomes Project phase I data
Autosomes Chromosome X GENCODE regions*

Samples 1,092 1,092 1,092
Total raw bases (Gb) 19,049 804 327
Mean mapped depth (3) 5.1 3.9 80.3
SNPs

No. sites overall 36.7 M 1.3 M 498 K
Novelty rate{ 58% 77% 50%
No. synonymous/non-synonymous/nonsense NA 4.7/6.5/0.097 K 199/293/6.3 K
Average no. SNPs per sample 3.60 M 105 K 24.0 K

Indels
No. sites overall 1.38 M 59 K 1,867
Novelty rate{ 62% 73% 54%
No. inframe/frameshift NA 19/14 719/1,066
Average no. indels per sample 344 K 13 K 440

Genotyped large deletions
No. sites overall 13.8 K 432 847
Novelty rate{ 54% 54% 50%
Average no. variants per sample 717 26 39

NA, not applicable.
*Autosomal genes only.
{Compared with dbSNP release 135 (Oct 2011), excluding contribution from phase I 1000 Genomes Project (or equivalent data for large deletions).

*Lists of participants and their affiliations appear at the end of the paper.
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Box 1 and Supplementary Fig. 1). Because of the challenges of iden-
tifying large and complex structural variants and shorter indels in
regions of low complexity, we focused on conservative but high-quality
subsets: biallelic indels and large deletions.

Overall, we discovered and genotyped 38 million SNPs, 1.4 million
bi-allelic indels and 14,000 large deletions (Table 1). Several tech-
nologies were used to validate a frequency-matched set of sites to

assess and control the false discovery rate (FDR) for all variant types.
Where results were clear, 3 out of 185 exome sites (1.6%), 5 out of 281
low-coverage sites (1.8%) and 72 out of 3,415 large deletions (2.1%)
could not be validated (Supplementary Information and Supplemen-
tary Tables 4–9). The initial indel call set was found to have a high
FDR (27 out of 76), which led to the application of further filters,
leaving an implied FDR of 5.4% (Supplementary Table 6 and
Supplementary Information). Moreover, for 2.1% of low-coverage
SNP and 18% of indel sites, we found inconsistent or ambiguous
results, indicating that substantial challenges remain in characterizing
variation in low-complexity genomic regions. We previously described
the ‘accessible genome’: the fraction of the reference genome in which
short-read data can lead to reliable variant discovery. Through longer
read lengths, the fraction accessible has increased from 85% in the pilot
phase to 94% (available as a genome annotation; see Supplementary
Information), and 1.7 million low-quality SNPs from the pilot phase
have been eliminated.

By comparison to external SNP and high-depth sequencing data,
we estimate the power to detect SNPs present at a frequency of 1% in
the study samples is 99.3% across the genome and 99.8% in the con-
sensus exome target (Fig. 1a). Moreover, the power to detect SNPs at
0.1% frequency in the study is more than 90% in the exome and nearly
70% across the genome. The accuracy of individual genotype calls at
heterozygous sites is more than 99% for common SNPs and 95% for
SNPs at a frequency of 0.5% (Fig. 1b). By integrating linkage disequi-
librium information, genotypes from low-coverage data are as accurate
as those from high-depth exome data for SNPs with frequencies .1%.
For very rare SNPs (#0.1%, therefore present in one or two copies),
there is no gain in genotype accuracy from incorporating linkage dis-
equilibrium information and accuracy is lower. Variation among
samples in genotype accuracy is primarily driven by sequencing depth
(Supplementary Fig. 3) and technical issues such as sequencing plat-
form and version (detectable by principal component analysis; Sup-
plementary Fig. 4), rather than by population-level characteristics.
The accuracy of inferred haplotypes at common SNPs was estimated
by comparison to SNP data collected on mother–father–offspring trios
for a subset of the samples. This indicates that a phasing (switch) error is
made, on average, every 300–400 kilobases (kb) (Supplementary Fig. 5).

A key goal of the 1000 Genomes Project was to identify more than
95% of SNPs at 1% frequency in a broad set of populations. Our
current resource includes ,50%, 98% and 99.7% of the SNPs with
frequencies of ,0.1%, 1.0% and 5.0%, respectively, in ,2,500 UK-
sampled genomes (the Wellcome Trust-funded UK10K project), thus

BOX 1

Constructing an integrated map of
variation
The 1,092 haplotype-resolved genomes released as phase I by the
1000 Genomes Project are the result of integrating diverse data from
multiple technologiesgeneratedbyseveral centresbetween2008and
2010. The Box 1 Figure describes the process leading from primary
data production to integrated haplotypes.

a, Unrelated individuals (see Supplementary Table 10 for exceptions) were
sampled in groups of up to 100 from related populations (Wright’s FST

typically ,1%) within broader geographical or ancestry-based groups2.
Primary data generated for each sample consist of low-coverage (average 53)
whole-genome and high-coverage (average 803 across a consensus target of
24 Mb spanning more than 15,000 genes) exome sequence data, and high
density SNP array information. b, Following read-alignment, multiple
algorithms were used to identify candidate variants. For each variant, quality
metrics were obtained, including information about the uniqueness of the
surrounding sequence (for example, mapping quality (map. qual.)), the
quality of evidence supporting the variant (for example, base quality (base.
qual.) and the position of variant bases within reads (read pos.)), and the
distribution of variant calls in the population (for example, inbreeding
coefficient). Machine-learning approaches using this multidimensional
information were trained on sets of high-quality known variants (for
example, the high-density SNP array data), allowing variant sites to be ranked
in confidence and subsequently thresholded to ensure low FDR. c, Genotype
likelihoods were used to summarize the evidence for each genotype at bi-
allelic sites (0, 1 or 2 copies of the variant) in each sample at every site. d, As
the evidence for a single genotype is typically weak in the low-coverage data,
and can be highly variable in the exome data, statistical methods were used to
leverage information from patterns of linkage disequilibrium, allowing
haplotypes (and genotypes) to be inferred.
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Figure 1 | Power and accuracy. a, Power to detect SNPs as a function of
variant count (and proportion) across the entire set of samples, estimated by
comparison to independent SNP array data in the exome (green) and whole
genome (blue). b, Genotype accuracy compared with the same SNP array data
as a function of variant frequency, summarized by the r2 between true and
inferred genotype (coded as 0, 1 and 2) within the exome (green), whole
genome after haplotype integration (blue), and whole genome without
haplotype integration (red). LD, linkage disequilibrium; WGS, whole-genome
sequencing.
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Box 1 and Supplementary Fig. 1). Because of the challenges of iden-
tifying large and complex structural variants and shorter indels in
regions of low complexity, we focused on conservative but high-quality
subsets: biallelic indels and large deletions.

Overall, we discovered and genotyped 38 million SNPs, 1.4 million
bi-allelic indels and 14,000 large deletions (Table 1). Several tech-
nologies were used to validate a frequency-matched set of sites to

assess and control the false discovery rate (FDR) for all variant types.
Where results were clear, 3 out of 185 exome sites (1.6%), 5 out of 281
low-coverage sites (1.8%) and 72 out of 3,415 large deletions (2.1%)
could not be validated (Supplementary Information and Supplemen-
tary Tables 4–9). The initial indel call set was found to have a high
FDR (27 out of 76), which led to the application of further filters,
leaving an implied FDR of 5.4% (Supplementary Table 6 and
Supplementary Information). Moreover, for 2.1% of low-coverage
SNP and 18% of indel sites, we found inconsistent or ambiguous
results, indicating that substantial challenges remain in characterizing
variation in low-complexity genomic regions. We previously described
the ‘accessible genome’: the fraction of the reference genome in which
short-read data can lead to reliable variant discovery. Through longer
read lengths, the fraction accessible has increased from 85% in the pilot
phase to 94% (available as a genome annotation; see Supplementary
Information), and 1.7 million low-quality SNPs from the pilot phase
have been eliminated.

By comparison to external SNP and high-depth sequencing data,
we estimate the power to detect SNPs present at a frequency of 1% in
the study samples is 99.3% across the genome and 99.8% in the con-
sensus exome target (Fig. 1a). Moreover, the power to detect SNPs at
0.1% frequency in the study is more than 90% in the exome and nearly
70% across the genome. The accuracy of individual genotype calls at
heterozygous sites is more than 99% for common SNPs and 95% for
SNPs at a frequency of 0.5% (Fig. 1b). By integrating linkage disequi-
librium information, genotypes from low-coverage data are as accurate
as those from high-depth exome data for SNPs with frequencies .1%.
For very rare SNPs (#0.1%, therefore present in one or two copies),
there is no gain in genotype accuracy from incorporating linkage dis-
equilibrium information and accuracy is lower. Variation among
samples in genotype accuracy is primarily driven by sequencing depth
(Supplementary Fig. 3) and technical issues such as sequencing plat-
form and version (detectable by principal component analysis; Sup-
plementary Fig. 4), rather than by population-level characteristics.
The accuracy of inferred haplotypes at common SNPs was estimated
by comparison to SNP data collected on mother–father–offspring trios
for a subset of the samples. This indicates that a phasing (switch) error is
made, on average, every 300–400 kilobases (kb) (Supplementary Fig. 5).

A key goal of the 1000 Genomes Project was to identify more than
95% of SNPs at 1% frequency in a broad set of populations. Our
current resource includes ,50%, 98% and 99.7% of the SNPs with
frequencies of ,0.1%, 1.0% and 5.0%, respectively, in ,2,500 UK-
sampled genomes (the Wellcome Trust-funded UK10K project), thus

BOX 1

Constructing an integrated map of
variation
The 1,092 haplotype-resolved genomes released as phase I by the
1000 Genomes Project are the result of integrating diverse data from
multiple technologiesgeneratedbyseveral centresbetween2008and
2010. The Box 1 Figure describes the process leading from primary
data production to integrated haplotypes.

a, Unrelated individuals (see Supplementary Table 10 for exceptions) were
sampled in groups of up to 100 from related populations (Wright’s FST

typically ,1%) within broader geographical or ancestry-based groups2.
Primary data generated for each sample consist of low-coverage (average 53)
whole-genome and high-coverage (average 803 across a consensus target of
24 Mb spanning more than 15,000 genes) exome sequence data, and high
density SNP array information. b, Following read-alignment, multiple
algorithms were used to identify candidate variants. For each variant, quality
metrics were obtained, including information about the uniqueness of the
surrounding sequence (for example, mapping quality (map. qual.)), the
quality of evidence supporting the variant (for example, base quality (base.
qual.) and the position of variant bases within reads (read pos.)), and the
distribution of variant calls in the population (for example, inbreeding
coefficient). Machine-learning approaches using this multidimensional
information were trained on sets of high-quality known variants (for
example, the high-density SNP array data), allowing variant sites to be ranked
in confidence and subsequently thresholded to ensure low FDR. c, Genotype
likelihoods were used to summarize the evidence for each genotype at bi-
allelic sites (0, 1 or 2 copies of the variant) in each sample at every site. d, As
the evidence for a single genotype is typically weak in the low-coverage data,
and can be highly variable in the exome data, statistical methods were used to
leverage information from patterns of linkage disequilibrium, allowing
haplotypes (and genotypes) to be inferred.
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Figure 1 | Power and accuracy. a, Power to detect SNPs as a function of
variant count (and proportion) across the entire set of samples, estimated by
comparison to independent SNP array data in the exome (green) and whole
genome (blue). b, Genotype accuracy compared with the same SNP array data
as a function of variant frequency, summarized by the r2 between true and
inferred genotype (coded as 0, 1 and 2) within the exome (green), whole
genome after haplotype integration (blue), and whole genome without
haplotype integration (red). LD, linkage disequilibrium; WGS, whole-genome
sequencing.
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; An integrated map of genetic variation
from 1,092 human genomes
The 1000 Genomes Project Consortium*

By characterizing the geographic and functional spectrum of human genetic variation, the 1000 Genomes Project aims to
build a resource to help to understand the genetic contribution to disease. Here we describe the genomes of 1,092
individuals from 14 populations, constructed using a combination of low-coverage whole-genome and exome
sequencing. By developing methods to integrate information across several algorithms and diverse data sources, we
provide a validated haplotype map of 38 million single nucleotide polymorphisms, 1.4 million short insertion and
deletions, and more than 14,000 larger deletions. We show that individuals from different populations carry different
profiles of rare and common variants, and that low-frequency variants show substantial geographic differentiation,
which is further increased by the action of purifying selection. We show that evolutionary conservation and coding
consequence are key determinants of the strength of purifying selection, that rare-variant load varies substantially
across biological pathways, and that each individual contains hundreds of rare non-coding variants at conserved sites,
such as motif-disrupting changes in transcription-factor-binding sites. This resource, which captures up to 98% of
accessible single nucleotide polymorphisms at a frequency of 1% in related populations, enables analysis of common and
low-frequency variants in individuals from diverse, including admixed, populations.

Recent efforts to map human genetic variation by sequencing exomes1

and whole genomes2–4 have characterized the vast majority of com-
mon single nucleotide polymorphisms (SNPs) and many structural
variants across the genome. However, although more than 95% of
common (.5% frequency) variants were discovered in the pilot phase
of the 1000 Genomes Project, lower-frequency variants, particularly
those outside the coding exome, remain poorly characterized. Low-fre-
quency variants are enriched for potentially functional mutations, for
example, protein-changing variants, under weak purifying selection1,5,6.
Furthermore, because low-frequency variants tend to be recent in
origin, they exhibit increased levels of population differentiation6–8.
Characterizing such variants, for both point mutations and struc-
tural changes, across a range of populations is thus likely to identify
many variants of functional importance and is crucial for interpreting

individual genome sequences; for example, to help to separate shared
variants from those private to families.

We now report on the genomes of 1,092 individuals sampled from
14 populations drawn from Europe, East Asia, sub-Saharan Africa
and the Americas (Supplementary Figs 1 and 2), analysed through a
combination of low-coverage (2–63) whole-genome sequence data,
targeted deep (50–1003) exome sequence data and dense SNP geno-
type data (Table 1 and Supplementary Tables 1–3). This design was
shown by the pilot phase2 to be powerful and cost-effective in dis-
covering and genotyping all but the rarest SNP and short insertion
and deletion (indel) variants. Here, the approach was augmented with
statistical methods for selecting higher quality variant calls from can-
didates obtained using multiple algorithms, and to integrate SNP,
indel and larger structural variants within a single framework (see

Table 1 | Summary of 1000 Genomes Project phase I data
Autosomes Chromosome X GENCODE regions*

Samples 1,092 1,092 1,092
Total raw bases (Gb) 19,049 804 327
Mean mapped depth (3) 5.1 3.9 80.3
SNPs

No. sites overall 36.7 M 1.3 M 498 K
Novelty rate{ 58% 77% 50%
No. synonymous/non-synonymous/nonsense NA 4.7/6.5/0.097 K 199/293/6.3 K
Average no. SNPs per sample 3.60 M 105 K 24.0 K

Indels
No. sites overall 1.38 M 59 K 1,867
Novelty rate{ 62% 73% 54%
No. inframe/frameshift NA 19/14 719/1,066
Average no. indels per sample 344 K 13 K 440

Genotyped large deletions
No. sites overall 13.8 K 432 847
Novelty rate{ 54% 54% 50%
Average no. variants per sample 717 26 39

NA, not applicable.
*Autosomal genes only.
{Compared with dbSNP release 135 (Oct 2011), excluding contribution from phase I 1000 Genomes Project (or equivalent data for large deletions).

*Lists of participants and their affiliations appear at the end of the paper.
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variants across the genome. However, although more than 95% of
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of the 1000 Genomes Project, lower-frequency variants, particularly
those outside the coding exome, remain poorly characterized. Low-fre-
quency variants are enriched for potentially functional mutations, for
example, protein-changing variants, under weak purifying selection1,5,6.
Furthermore, because low-frequency variants tend to be recent in
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Characterizing such variants, for both point mutations and struc-
tural changes, across a range of populations is thus likely to identify
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individual genome sequences; for example, to help to separate shared
variants from those private to families.
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didates obtained using multiple algorithms, and to integrate SNP,
indel and larger structural variants within a single framework (see
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By characterizing the geographic and functional spectrum of human genetic variation, the 1000 Genomes Project aims to
build a resource to help to understand the genetic contribution to disease. Here we describe the genomes of 1,092
individuals from 14 populations, constructed using a combination of low-coverage whole-genome and exome
sequencing. By developing methods to integrate information across several algorithms and diverse data sources, we
provide a validated haplotype map of 38 million single nucleotide polymorphisms, 1.4 million short insertion and
deletions, and more than 14,000 larger deletions. We show that individuals from different populations carry different
profiles of rare and common variants, and that low-frequency variants show substantial geographic differentiation,
which is further increased by the action of purifying selection. We show that evolutionary conservation and coding
consequence are key determinants of the strength of purifying selection, that rare-variant load varies substantially
across biological pathways, and that each individual contains hundreds of rare non-coding variants at conserved sites,
such as motif-disrupting changes in transcription-factor-binding sites. This resource, which captures up to 98% of
accessible single nucleotide polymorphisms at a frequency of 1% in related populations, enables analysis of common and
low-frequency variants in individuals from diverse, including admixed, populations.

Recent efforts to map human genetic variation by sequencing exomes1

and whole genomes2–4 have characterized the vast majority of com-
mon single nucleotide polymorphisms (SNPs) and many structural
variants across the genome. However, although more than 95% of
common (.5% frequency) variants were discovered in the pilot phase
of the 1000 Genomes Project, lower-frequency variants, particularly
those outside the coding exome, remain poorly characterized. Low-fre-
quency variants are enriched for potentially functional mutations, for
example, protein-changing variants, under weak purifying selection1,5,6.
Furthermore, because low-frequency variants tend to be recent in
origin, they exhibit increased levels of population differentiation6–8.
Characterizing such variants, for both point mutations and struc-
tural changes, across a range of populations is thus likely to identify
many variants of functional importance and is crucial for interpreting

individual genome sequences; for example, to help to separate shared
variants from those private to families.

We now report on the genomes of 1,092 individuals sampled from
14 populations drawn from Europe, East Asia, sub-Saharan Africa
and the Americas (Supplementary Figs 1 and 2), analysed through a
combination of low-coverage (2–63) whole-genome sequence data,
targeted deep (50–1003) exome sequence data and dense SNP geno-
type data (Table 1 and Supplementary Tables 1–3). This design was
shown by the pilot phase2 to be powerful and cost-effective in dis-
covering and genotyping all but the rarest SNP and short insertion
and deletion (indel) variants. Here, the approach was augmented with
statistical methods for selecting higher quality variant calls from can-
didates obtained using multiple algorithms, and to integrate SNP,
indel and larger structural variants within a single framework (see

Table 1 | Summary of 1000 Genomes Project phase I data
Autosomes Chromosome X GENCODE regions*

Samples 1,092 1,092 1,092
Total raw bases (Gb) 19,049 804 327
Mean mapped depth (3) 5.1 3.9 80.3
SNPs

No. sites overall 36.7 M 1.3 M 498 K
Novelty rate{ 58% 77% 50%
No. synonymous/non-synonymous/nonsense NA 4.7/6.5/0.097 K 199/293/6.3 K
Average no. SNPs per sample 3.60 M 105 K 24.0 K

Indels
No. sites overall 1.38 M 59 K 1,867
Novelty rate{ 62% 73% 54%
No. inframe/frameshift NA 19/14 719/1,066
Average no. indels per sample 344 K 13 K 440

Genotyped large deletions
No. sites overall 13.8 K 432 847
Novelty rate{ 54% 54% 50%
Average no. variants per sample 717 26 39

NA, not applicable.
*Autosomal genes only.
{Compared with dbSNP release 135 (Oct 2011), excluding contribution from phase I 1000 Genomes Project (or equivalent data for large deletions).

*Lists of participants and their affiliations appear at the end of the paper.
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Phase	
  I	
  discovered	
  ~40M	
  SNPs,	
  indels,	
  
and	
  structural	
  variants	
  



Phase	
  I	
  achieves	
  our	
  goal	
  of	
  essen=ally	
  complete	
  
discovery	
  of	
  all	
  variants	
  with	
  >1%	
  frequency	
  

•  For	
  1%	
  frequency	
  SNPs	
  
– 99.3%	
  genome	
  	
  
– 99.8%	
  exome	
  

•  For	
  0.1%	
  frequency	
  SNPs	
  
– 70%	
  genome	
  
– 90%	
  exome	
  

Box 1 and Supplementary Fig. 1). Because of the challenges of iden-
tifying large and complex structural variants and shorter indels in
regions of low complexity, we focused on conservative but high-quality
subsets: biallelic indels and large deletions.

Overall, we discovered and genotyped 38 million SNPs, 1.4 million
bi-allelic indels and 14,000 large deletions (Table 1). Several tech-
nologies were used to validate a frequency-matched set of sites to

assess and control the false discovery rate (FDR) for all variant types.
Where results were clear, 3 out of 185 exome sites (1.6%), 5 out of 281
low-coverage sites (1.8%) and 72 out of 3,415 large deletions (2.1%)
could not be validated (Supplementary Information and Supplemen-
tary Tables 4–9). The initial indel call set was found to have a high
FDR (27 out of 76), which led to the application of further filters,
leaving an implied FDR of 5.4% (Supplementary Table 6 and
Supplementary Information). Moreover, for 2.1% of low-coverage
SNP and 18% of indel sites, we found inconsistent or ambiguous
results, indicating that substantial challenges remain in characterizing
variation in low-complexity genomic regions. We previously described
the ‘accessible genome’: the fraction of the reference genome in which
short-read data can lead to reliable variant discovery. Through longer
read lengths, the fraction accessible has increased from 85% in the pilot
phase to 94% (available as a genome annotation; see Supplementary
Information), and 1.7 million low-quality SNPs from the pilot phase
have been eliminated.

By comparison to external SNP and high-depth sequencing data,
we estimate the power to detect SNPs present at a frequency of 1% in
the study samples is 99.3% across the genome and 99.8% in the con-
sensus exome target (Fig. 1a). Moreover, the power to detect SNPs at
0.1% frequency in the study is more than 90% in the exome and nearly
70% across the genome. The accuracy of individual genotype calls at
heterozygous sites is more than 99% for common SNPs and 95% for
SNPs at a frequency of 0.5% (Fig. 1b). By integrating linkage disequi-
librium information, genotypes from low-coverage data are as accurate
as those from high-depth exome data for SNPs with frequencies .1%.
For very rare SNPs (#0.1%, therefore present in one or two copies),
there is no gain in genotype accuracy from incorporating linkage dis-
equilibrium information and accuracy is lower. Variation among
samples in genotype accuracy is primarily driven by sequencing depth
(Supplementary Fig. 3) and technical issues such as sequencing plat-
form and version (detectable by principal component analysis; Sup-
plementary Fig. 4), rather than by population-level characteristics.
The accuracy of inferred haplotypes at common SNPs was estimated
by comparison to SNP data collected on mother–father–offspring trios
for a subset of the samples. This indicates that a phasing (switch) error is
made, on average, every 300–400 kilobases (kb) (Supplementary Fig. 5).

A key goal of the 1000 Genomes Project was to identify more than
95% of SNPs at 1% frequency in a broad set of populations. Our
current resource includes ,50%, 98% and 99.7% of the SNPs with
frequencies of ,0.1%, 1.0% and 5.0%, respectively, in ,2,500 UK-
sampled genomes (the Wellcome Trust-funded UK10K project), thus

BOX 1

Constructing an integrated map of
variation
The 1,092 haplotype-resolved genomes released as phase I by the
1000 Genomes Project are the result of integrating diverse data from
multiple technologiesgeneratedbyseveral centresbetween2008and
2010. The Box 1 Figure describes the process leading from primary
data production to integrated haplotypes.

a, Unrelated individuals (see Supplementary Table 10 for exceptions) were
sampled in groups of up to 100 from related populations (Wright’s FST

typically ,1%) within broader geographical or ancestry-based groups2.
Primary data generated for each sample consist of low-coverage (average 53)
whole-genome and high-coverage (average 803 across a consensus target of
24 Mb spanning more than 15,000 genes) exome sequence data, and high
density SNP array information. b, Following read-alignment, multiple
algorithms were used to identify candidate variants. For each variant, quality
metrics were obtained, including information about the uniqueness of the
surrounding sequence (for example, mapping quality (map. qual.)), the
quality of evidence supporting the variant (for example, base quality (base.
qual.) and the position of variant bases within reads (read pos.)), and the
distribution of variant calls in the population (for example, inbreeding
coefficient). Machine-learning approaches using this multidimensional
information were trained on sets of high-quality known variants (for
example, the high-density SNP array data), allowing variant sites to be ranked
in confidence and subsequently thresholded to ensure low FDR. c, Genotype
likelihoods were used to summarize the evidence for each genotype at bi-
allelic sites (0, 1 or 2 copies of the variant) in each sample at every site. d, As
the evidence for a single genotype is typically weak in the low-coverage data,
and can be highly variable in the exome data, statistical methods were used to
leverage information from patterns of linkage disequilibrium, allowing
haplotypes (and genotypes) to be inferred.
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Figure 1 | Power and accuracy. a, Power to detect SNPs as a function of
variant count (and proportion) across the entire set of samples, estimated by
comparison to independent SNP array data in the exome (green) and whole
genome (blue). b, Genotype accuracy compared with the same SNP array data
as a function of variant frequency, summarized by the r2 between true and
inferred genotype (coded as 0, 1 and 2) within the exome (green), whole
genome after haplotype integration (blue), and whole genome without
haplotype integration (red). LD, linkage disequilibrium; WGS, whole-genome
sequencing.
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~99% of variation in each person has already 
been cataloged in 1000 Genomes Phase I!
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•  3-­‐4,000,000	
  variants	
  per	
  individual	
  
•  10-­‐11,000	
  nonsynonymous	
  changes	
  
•  220-­‐250	
  in	
  frame	
  indels	
  
•  80-­‐100	
  premature	
  stop	
  codons	
  
•  40-­‐50	
  splice	
  site	
  disrup=ons	
  
•  50-­‐100	
  HGMD	
  “recessive	
  disease	
  causing”	
  
muta=ons	
  

Pilot project analysis; Current data summarized in Table 2 of Phase 1 paper 	
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  insights:	
  	
  
many	
  rare	
  func=onal	
  variants	
  



Scien=fic	
  insights:	
  	
  
rare	
  varia=on	
  is	
  popula=on	
  specific	
  

•  17%	
  of	
  low	
  frequency	
  (0.5-­‐5%)	
  
in	
  a	
  single	
  ancestry	
  group	
  

•  53%	
  of	
  less	
  than	
  0.5%	
  in	
  a	
  
single	
  popula=on	
  

•  African	
  popula=ons	
  have	
  many	
  
more	
  many	
  low	
  frequency	
  
variants	
  due	
  to	
  bojleneck	
  on	
  
other	
  lineages	
  

•  All	
  popula=ons	
  are	
  enriched	
  in	
  
rare	
  variants	
  
–  Explosive	
  recent	
  popula=on	
  

growth	
  

meeting this goal. However, coverage may be lower for populations
not closely related to those studied. For example, our resource includes
only 23.7%, 76.9% and 99.3% of the SNPs with frequencies of ,0.1%,
1.0% and 5.0%, respectively, in ,2,000 genomes sequenced in a study
of the isolated population of Sardinia (the SardiNIA study).

Genetic variation within and between populations
The integrated data set provides a detailed view of variation across
several populations (illustrated in Fig. 2a). Most common variants
(94% of variants with frequency $5% in Fig. 2a) were known before
the current phase of the project and had their haplotype structure
mapped through earlier projects2,9. By contrast, only 62% of variants
in the range 0.5–5% and 13% of variants with frequencies of #0.5%
had been described previously. For analysis, populations are grouped
by the predominant component of ancestry: Europe (CEU (see Fig. 2a
for definitions of this and other populations), TSI, GBR, FIN and IBS),
Africa (YRI, LWK and ASW), East Asia (CHB, JPT and CHS) and
the Americas (MXL, CLM and PUR). Variants present at 10% and
above across the entire sample are almost all found in all of the
populations studied. By contrast, 17% of low-frequency variants in
the range 0.5–5% were observed in a single ancestry group, and 53% of
rare variants at 0.5% were observed in a single population (Fig. 2b).
Within ancestry groups, common variants are weakly differentiated
(most within-group estimates of Wright’s fixation index (FST) are
,1%; Supplementary Table 11), although below 0.5% frequency
variants are up to twice as likely to be found within the same popu-
lation compared with random samples from the ancestry group
(Supplementary Fig. 6a). The degree of rare-variant differentiation
varies between populations. For example, within Europe, the IBS and
FIN populations carry excesses of rare variants (Supplementary Fig.
6b), which can arise through events such as recent bottlenecks10, ‘clan’
breeding structures11 and admixture with diverged populations12.

Some common variants show strong differentiation between popu-
lations within ancestry-based groups (Supplementary Table 12),
many of which are likely to have been driven by local adaptation either
directly or through hitchhiking. For example, the strongest differenti-
ation between African populations is within an NRSF (neuron-restrictive
silencer factor) transcription-factor peak (PANC1 cell line)13, upstream
of ST8SIA1 (difference in derived allele frequency LWK 2 YRI of 0.475 at
rs7960970), whose product is involved in ganglioside generation14.
Overall, we find a range of 17–343 SNPs (fewest 5 CEU 2 GBR,
most 5 FIN 2 TSI) showing a difference in frequency of at least 0.25
between pairs of populations within an ancestry group.

The derived allele frequency distribution shows substantial diver-
gence between populations below a frequency of 40% (Fig. 2c), such
that individuals from populations with substantial African ancestry
(YRI, LWK and ASW) carry up to three times as many low-frequency
variants (0.5–5% frequency) as those of European or East Asian origin,
reflecting ancestral bottlenecks in non-African populations15. However,
individuals from all populations show an enrichment of rare variants
(,0.5% frequency), reflecting recent explosive increases in population
size and the effects of geographic differentiation6,16. Compared with the
expectations from a model of constant population size, individuals
from all populations show a substantial excess of high-frequency-
derived variants (.80% frequency).

Because rare variants are typically recent, their patterns of sharing
can reveal aspects of population history. Variants present twice across
the entire sample (referred to as f2 variants), typically the most recent
of informative mutations, are found within the same population in
53% of cases (Fig. 3a). However, between-population sharing identifies
recent historical connections. For example, if one of the individuals
carrying an f2 variant is from the Spanish population (IBS) and the
other is not (referred to as IBS2X), the other individual is more likely
to come from the Americas populations (48%, correcting for sample
size) than from elsewhere in Europe (41%). Within the East Asian
populations, CHS and CHB show stronger f2 sharing to each other

(58% and 53% of CHS2X and CHB2X variants, respectively) than
either does to JPT, but JPT is closer to CHB than to CHS (44% versus
35% of JPT2X variants). Within African-ancestry populations, the
ASW are closer to the YRI (42% of ASW2X f2 variants) than the
LWK (28%), in line with historical information17 and genetic evidence
based on common SNPs18. Some sharing patterns are surprising; for
example, 2.5% of the f2 FIN2X variants are shared with YRI or LWK
populations.

Independent evidence about variant age comes from the length of
the shared haplotypes on which they are found. We find, as expected,
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Figure 2 | The distribution of rare and common variants. a, Summary of
inferred haplotypes across a 100-kb region of chromosome 2 spanning the genes
ALMS1 and NAT8, variation in which has been associated with kidney disease45.
Each row represents an estimated haplotype, with the population of origin
indicated on the right. Reference alleles are indicated by the light blue
background. Variants (non-reference alleles) above 0.5% frequency are
indicated by pink (typed on the high-density SNP array), white (previously
known) and dark blue (not previously known). Low frequency variants (,0.5%)
are indicated by blue crosses. Indels are indicated by green triangles and novel
variants by dashes below. A large, low-frequency deletion (black line) spanning
NAT8 is present in some populations. Multiple structural haplotypes mediated
by segmental duplications are present at this locus, including copy number gains,
which were not genotyped for this study. Within each population, haplotypes are
ordered by total variant count across the region. Population abbreviations: ASW,
people with African ancestry in Southwest United States; CEU, Utah residents
with ancestry from Northern and Western Europe; CHB, Han Chinese in
Beijing, China; CHS, Han Chinese South, China; CLM, Colombians in Medellin,
Colombia; FIN, Finnish in Finland; GBR, British from England and Scotland,
UK; IBS, Iberian populations in Spain; LWK, Luhya in Webuye, Kenya; JPT,
Japanese in Tokyo, Japan; MXL, people with Mexican ancestry in Los Angeles,
California; PUR, Puerto Ricans in Puerto Rico; TSI, Toscani in Italia; YRI,
Yoruba in Ibadan, Nigeria. Ancestry-based groups: AFR, African; AMR,
Americas; EAS, East Asian; EUR, European. b, The fraction of variants identified
across the project that are found in only one population (white line), are
restricted to a single ancestry-based group (defined as in a, solid colour), are
found in all groups (solid black line) and all populations (dotted black line).
c, The density of the expected number of variants per kilobase carried by a
genome drawn from each population, as a function of variant frequency (see
Supplementary Information). Colours as in a. Under a model of constant
population size, the expected density is constant across the frequency spectrum.
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What	
  has	
  1000	
  Genomes	
  given	
  us?	
  

•  Large,	
  public	
  NGS	
  datasets	
  
•  Catalogues	
  of	
  variants	
  

– Func=onal	
  candidates	
  
– Screening	
  list	
  for	
  medical	
  sequencing	
  
– Basis	
  for	
  imputa=on	
  
– Data	
  for	
  popula=on	
  gene=cs	
  analysis	
  

•  File	
  formats	
  and	
  tools	
  for	
  NGS	
  analysis	
  
– Basis	
  for	
  large	
  scale	
  medical	
  projects	
  



Phase	
  2+3	
  will	
  include	
  more	
  
popula=ons,	
  deeper	
  data,	
  bejer	
  calls	
  

•  Expand	
  into	
  11	
  more	
  popula=ons	
  
–  In	
  Africa,	
  Asia,	
  and	
  Indian	
  sub-­‐convenient	
  
– 2500	
  samples	
  overall	
  

•  Deeper,	
  bejer	
  data	
  
– At	
  least	
  3x	
  coverage,	
  minimum	
  of	
  paired	
  end	
  76bp	
  
– Exomes	
  and	
  exome	
  chips	
  for	
  all	
  samples	
  

•  Bejer	
  calls	
  
– New	
  variant	
  calling	
  (local	
  and	
  de	
  novo	
  assembly)	
  
– Mul=-­‐allelic	
  haplotype	
  integra=on	
  

17	





Upcoming	
  talks	
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•  Func=onal	
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•  How	
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  use	
  the	
  data	
  in	
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  studies	
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  Ripke	
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