The 1000 Genomes Project

Mark DePristo

Co-director of Medical and Population Genetics Program Broad Institute of MIT and Harvard

Representing and presenting slides from the 1000 Genomes Project Consortium

1000 Genomes project goals

- A public database of essentially all SNPs, indels, and detectable CNVs with allele frequency >1% in each of multiple human population samples
- Pioneer and evaluate methods for:
 - Generating data from next-generation sequencing platforms
 - Exchanging and combining data and analytical methods
 - Discovering and genotyping of SNPs, indels, and CNVs from next-generation DNA sequencing data
 - Imputation with and from next generation sequencing data

Strategy: use next-generation DNA sequencing to discover common variation

- Collect shotgun DNA sequencing reads using next-generation DNA sequencers

 Only shallow (4x) coverage per sample
- Map the reads to the reference genome
- Detect variants based on the multiple alignment of reads
 - Statistical analysis across all samples together

5 years ago little of this could be done efficiently, accurately or at scale

The 1000 Genomes Project is a trilogy in four parts

Pilot (2008-2010, published Nature Oct. 2010):

- Deep sequence for two trios (CEU and YRI)
- Low coverage (~2x) of 180 individuals in 3 populations
- Capture of 1000 genes in ~700 individuals

Phase 1 (2010-2012, published Nature Nov. 2012)

- 1100 individuals with ~3x low-coverage, many with exomes
- OMNI 2.5M genotyping
- Paper published last week in Nature

Phase 2+3 (2012-2013, publish final Paper TBD)

- ~2500 samples at >4X coverage, all with exomes and many genotyping arrays
- High coverage Complete Genomics data for 50 samples (with plans for 500)
- Total data size of 25-30 times from original plan, 2.5 more samples in more populations

Phase I complete; paper just published

ARTICLE

doi:10.1038/nature11632

An integrated map of genetic variation from 1,092 human genomes

The 1000 Genomes Project Consortium*

Nature. 2012. 491:56-65

Phase1: 1092 samples from 14 populations

Integrated analysis strategy

a Primary data Sequencing, array genotyping

b Candidate variants and quality metrics Read mapping, quality score recalibration

Integrated analysis strategy

C Variant calls and genotype likelihoods Variant calling, statistical filtering

d Integrated haplotypes Probabilistic haplotype estimation

Phase I discovered ~40M SNPs, indels, and structural variants

	Autosomes	GENCODE regions*	
Samples	1,092	1,092	
Total raw bases (Gb)	19,049	327	
Mean mapped depth (\times)	5.1	80.3	
SNPs			
No. sites overall	36.7 M	498 K	
Novelty rate†	58%	50%	
No. synonymous/non-synonymous/nonsense	NA	199/293/6.3 K	
Average no. SNPs per sample	3.60 M	24.0 K	
Indels			
No. sites overall	1.38 M	1,867	
Novelty rate†	62%	54%	
No. inframe/frameshift	NA	719/1,066	
Average no. indels per sample	344 K	440	
Genotyped large deletions			
No. sites overall	13.8 K	847	
Novelty rate†	54%	50%	
Average no. variants per sample	717	39	

Phase I achieves our goal of essentially complete discovery of all variants with >1% frequency

- For 1% frequency SNPs
 - 99.3% genome
 - 99.8% exome
- For 0.1% frequency SNPs
 - 70% genome
 - 90% exome

~99% of variation in each person has already been cataloged in 1000 Genomes Phase I

Genotype accuracy at >99% at chip heterozygous sites

Sites	METHOD	#chr20 Variants	#OMNI Overlaps	HET (OMNI)	NREF- EITHER	OVER- ALL
LC SNPs/INDELs/SVs + EX SNPs	Beagle +MaCH	907,452	52,329	0.95%	1.11%	0.36%

Hyun Min Kang

Scientific insights: many rare functional variants

- 3-4,000,000 variants per individual
- 10-11,000 nonsynonymous changes
- 220-250 in frame indels
- 80-100 premature stop codons
- 40-50 splice site disruptions
- 50-100 HGMD "recessive disease causing" mutations

Pilot project analysis; Current data summarized in Table 2 of Phase I paper

Scientific insights: rare variation is population specific

- 17% of low frequency (0.5-5%) in a single ancestry group
- 53% of less than 0.5% in a single population
- African populations have many more many low frequency variants due to bottleneck on other lineages
- All populations are enriched in rare variants
 - Explosive recent population growth

Scientific insights: full sequence variation helps GWAS

Gaffney and Pritchard

What has 1000 Genomes given us?

- Large, public NGS datasets
- Catalogues of variants
 - Functional candidates
 - Screening list for medical sequencing
 - Basis for imputation
 - Data for population genetics analysis
- File formats and tools for NGS analysis
 Basis for large scale medical projects

Phase 2+3 will include more populations, deeper data, better calls

- Expand into 11 more populations
 - In Africa, Asia, and Indian sub-convenient
 - 2500 samples overall
- Deeper, better data
 - At least 3x coverage, minimum of paired end 76bp
 - Exomes and exome chips for all samples
- Better calls
 - New variant calling (local and *de novo* assembly)
 - Multi-allelic haplotype integration

Upcoming talks

- How to access the data
 - Laura Clarke
- Structural variants
 - Ryan Mills
- Population genetic and admixture analyses
 - Eimear Kenny
- Functional analyses
 - Ekta Khurana
- How to use the data in disease studies
 - Stephan Ripke

Credits

More information at www.1000genomes.org

Paul Flicek for contributing so many slides

1000 Genomes Project Populations

