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Types of questions
• Demography!

• Population expansions/
contractions 

• Population divergence/
mixing 

• Admixture

• Natural selection!

• Positive selection 

• Allele frequency 
distributions 

• Haplotype frequencies 

• Negative selection 

• Allele frequency 
distributions 

• Allele sharing 

• Haplotype patterns



Admixture as a lens into recent human demography

• Recombination breaks haplotypes as well as 
local ancestry tracts.

Recombination breaks up local ancestry 
tracts over time

reference panel!

RFMix!

Haploid LAI tracts!

CEU! YRI! NatAm!
reference panel!

ACB!
ASW!
CLM!
MXL!
PEL!
PUR!

3-way Affy 6.0 pipeline!

RFMix!

Haploid LAI tracts!

CEU! YRI!
reference panel!

ACB!
ASW!

2-way Omni 2.5M pipeline!

Gravel, S. (2012). Population genetics models of local ancestry. Genetics 191, 607–619.

Alicia Martin Eimear Kenny
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Substantial Global Genetic 
Diversity in 1000 Genomes

• Ancestry calls available: ftp://ftp.1000genomes.ebi.ac.uk/
vol1/ftp/technical/working/20140818_ancestry_deconvolution/

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/working/20140818_ancestry_deconvolution/


Migration Timing Events in Peruvians

• Gravel (2012) Population genetics models of local ancestry.  Genetics 191, 607-619. 

• tracts: https://github.com/sgravel/tracts

Migration timing events in Peruvians
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PSMC: Views into ancient human demography

LETTER
doi:10.1038/nature10231

Inference of human population history from
individual whole-genome sequences
Heng Li1,2 & Richard Durbin1

The history of human population size is important for understand-
ing human evolution. Various studies1–5 have found evidence for a
founder event (bottleneck) in East Asian and European popula-
tions, associated with the human dispersal out-of-Africa event
around 60 thousand years (kyr) ago. However, these studies have
had to assume simplified demographic models with few parameters,
and they do not provide a precise date for the start and stop times of
the bottleneck. Here, with fewer assumptions on population size
changes, we present a more detailed history of human population
sizes between approximately ten thousand and a million years ago,
using the pairwise sequentially Markovian coalescent model applied
to the complete diploid genome sequences of a Chinese male (YH)6,
a Korean male (SJK)7, three European individuals (J. C. Venter8,
NA12891 and NA12878 (ref. 9)) and two Yoruba males (NA18507
(ref. 10) and NA19239). We infer that European and Chinese popu-
lations had very similar population-size histories before 10–20 kyr
ago. Both populations experienced a severe bottleneck 10–60 kyr
ago, whereas African populations experienced a milder bottleneck
from which they recovered earlier. All three populations have an
elevated effective population size between 60 and 250 kyr ago, pos-
sibly due to population substructure11. We also infer that the dif-
ferentiation of genetically modern humans may have started as early
as 100–120 kyr ago12, but considerable genetic exchanges may still
have occurred until 20–40 kyr ago.

The distribution of the time since the most recent common ancestor
(TMRCA) between two alleles in an individual provides information
about the history of change in population size over time. Existing
methods for reconstructing the detailed TMRCA distribution have
analysed large samples of individuals at non-recombining loci like
mitochondrial DNA13. However, the statistical resolution of inferences
from any one locus is poor, and power fades rapidly upon moving back
in time because there are few independent lineages probing deep time
depths (in humans, no information is available from mitochondrial
DNA beyond about 200 kyr ago, when all humans share a common
maternal ancestor11). In contrast, a diploid genome sequence contains
hundreds of thousands of independent loci, each with its own TMRCA
between the two alleles carried by an individual. In principle, it should
be possible to reconstruct the TMRCA distribution across the auto-
somes and the X chromosome by studying how the local density of
heterozygous sites changes across the genome, reflecting segments of
constant TMRCA separated by historical recombination events. To
explore whether we could use this idea to learn about the detailed
TMRCA distribution from a diploid whole-genome sequence, we pro-
posed the pairwise sequentially Markovian coalescent (PSMC) model,
which is a specialization to the case of two chromosomes of the sequen-
tially Markovian coalescent model14 (Fig. 1a). The free parameters of
this model include the scaled mutation rate, the recombination rate
and piecewise constant ancestral population sizes (see Methods). We
scaled results to real time, assuming 25 years per generation and a
neutral mutation rate of 2.5 3 1028 per generation15. The con-
sequences of uncertainty in the two scaling parameters will be dis-
cussed later in the text.

To validate our model, we simulated one-hundred 30-megabase
(Mb) sequences with a sharp out-of-Africa bottleneck followed by a
population expansion, and inferred population-size history with
PSMC (Fig. 2a). PSMC was able to recover the parameters used in
the simulation and the variance of the estimate was small between
20 kyr ago and 3 Myr ago. More recently than 20 kyr ago or more
anciently than 3 Myr ago, few recombination events are left in the
present sequence, which reduces the power of PSMC. Therefore, the
estimated effective population size (Ne) in these time intervals was not
as accurate and had large variance. To test the robustness of the model,
we introduced variable mutation rates and recombination hotspots in
the simulation (Supplementary Information). The inference was still
close to the true history (Fig. 2b) and a uniform rate of single nucleo-
tide polymorphism (SNP) ascertainment errors did not change our
qualitative results either (Supplementary Fig. 2). The simulations did,
however, reveal a limitation of PSMC in recovering sudden changes in
effective population size. For example, the instantaneous reduction from
12,000 to 1,200 at 100 kyr ago in the simulation was spread over several
preceding tens of thousands of years in the PSMC reconstruction.

1The Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK. 2Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA.
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Figure 1 | Illustration of the PSMC model and its application to simulated
data. a, The PSMC infers the local time to the most recent common ancestor
(TMRCA) on the basis of the local density of heterozygotes, using a hidden
Markov model in which the observation is a diploid sequence, the hidden states
are discretized TMRCA and the transitions represent ancestral recombination
events. b, We used the ms software to simulate the TMRCA relating the two
alleles of an individual across a 200-kb region (the thick red line), and inferred
the local TMRCA at each locus using the PSMC (the heat map). The inference
usually includes the correct time, with the greatest errors at transition points.
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• The number of heterozygous 
and homozygous positions 
along an individual’s 
genome is informative about 
historical population sizes. 

• The Pairwise Sequential 
Markov Coalescent model is 
a method for modeling these 
patterns using an HMM to 
infer when (and by how 
much) population sizes have 
changed throughout time.

• Li and Durbin (2011). Inference of human population history from individual whole-genome sequences.  Nature 475(7357):493-6.



• By analyzing all 2504 
samples in TGP, we are 
gaining deeper insight 
into human demographic 
history.
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Natural Selection
• Common methods for inferring natural selection model 

haplotype patterns across individuals. 

• Within populations:  iHS 

• Across populations:  XP-EHH

 There is ample debate about the strength and mode of natural selection that has occurred in 
recent human evolution.  This is particularly so for classical hard sweeps, during which an 
adaptive allele quickly drags a single haplotype to high frequency.  An alternative model of 
adaptation involves soft sweeps, whereby multiple haplotypes are brought to high frequency (i.e. 
when a previously segregating neutral or slightly deleterious allele becomes adaptive in a new 
environment).  Existing haplotype-based tests—such as the integrated haplotype score (iHS) 
that scans for positive selection by tracking the decay of haplotype homozygosity—work under 
the assumption that a positively selected region will be dominated by a single haplotype.  
However, iHS is expected to lose power under a soft sweep.  Here we develop a statistic 
(iHH12), inspired by iHS and recent work in Drosophila population genetics, designed to 
detect recent soft sweeps by tracking the decay of homozygosity of multiple haplotypes away 
from a core locus.  We evaluate our statistic with rigorous simulations under multiple realistic 
models of human demography. We find that it has high power to detect both hard and soft 
sweeps and has improved power compared to iHS.  In particular, for a fixed selection coefficient, 
our simulations suggest that we have greatest power to detect soft sweeps populations with an 
African demographic history, which have been understudied to date.  We apply this statistic and 
iHS to a large human genotype dataset of 2,504 unrelated individuals spanning 26 worldwide 
populations from the 1000 Genomes Project.  A large number of regions identified by our 
statistic are not identified by iHS, in particular in African populations.  Surprisingly, genes 
proximal to iHS peaks are not significantly enriched for any disease or gene ontology terms, 
however genes proximal to iHH12 peaks have many significantly enriched terms.  Furthermore, 
iHH12 peaks in African populations had very few significant terms, perhaps reflecting the 
paucity of disease research in these populations.  Our results suggest that soft sweeps may have 
played an important role in recent human adaptation and disease prevalence.

Abstract

    We have made iHS and iHH12 genome-wide scans for 2,504 
individuals across 26 worldwide human populations using the 
1000 Genomes Project Phase 3 Whole Genome Sequences and 
have identified putatively selected regions.  On the right, we 
show the fraction of all regions that are identified by iHS only, 
iHH12 only, or both. 
 Notably, few regions are identified by both statistics.  Since 
iHH2 has similar power to iHS for detecting hard sweeps and 
iHS has reduced power to detect soft sweeps, this suggests that a 
large number of regions may harbor signatures of a soft selective 
sweep. Since the iHH12 statistic has good power to detect both 
hard and soft sweeps, we are also currently pursuing methods to  
incorporate more genomic features to distinguish between 
regions that underwent hard versus soft sweeps as well as to 
identify possible false positive hits.

Preliminary Results
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 We conducted a gene and disease ontology analysis with 
the tool GREAT (McLean et al., 2010) to search for 
significantly enriched terms associated with the genes 
proximal to our regions putatively under selection.  
Surprisingly, iHS regions in all populations had zero 
significant term enrichments.

iHH12 peaks in African populations had very few significant
terms, perhaps reflecting the paucity of disease research in 
these populations. Permutation tests with 2600 datasets of random genomic regions suggest that 
finding more than 1 significant term is unlikely with randomly chosen regions.  Our results 
suggest that soft sweeps may have played an important role in recent human adaptation and 
disease prevalence.

Gene and Disease Ontology Analysis
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Garud, et al. (2014) Recent selective sweeps in Drosophila were abundant and primarily soft. arXiv:1303.0906
McLean, et al. (2010) GREAT improves functional interpretation of cis-regulatory regions. Nature Biotechnology. 28: 495-501 

 A classical hard sweep occurs when an adaptive de novo mutation reaches establishment and 
quickly rises in frequency in the population.  As this happens, surrounding linked variation is 
also brought to high frequency, resulting in a reduction of diversity surrounding the adaptive 
mutation and a single derived haplotype at high frequency.

 However, if a previously segregating neutral/mildly deleterious becomes adaptive (or the 
adaptive mutation rate is high), then we might expect a soft sweep to occur.  In this scenario, the 
adaptive mutation can be segregating on multiple haplotype backgrouds, each of which is likely 
to rise to high frequency.
 Integrated Haplotype Score (iHS) was developed assuming a hard sweep as the mode of 
adaptation.  In the case of soft sweep it has reduced power to detect these events because the 
reduction in diversity is less acute than in the case of a hard sweep.

Hard Versus Soft Sweeps

Hard
Sweep

Soft
Sweep

Theory
 Garud, et al. (2014) developed a window based statistic with good power to detect both hard 
and soft sweeps.  Here we extend this statistic into an integrated haplotype homozygosity 
framework.  This statistic combines the counts of the two most frequent haplotypes at a locus 
and tracks the decay of haplotype homozygosity away from it.  This curve is integrated to give 
the iHH12 score.
 
     -- haplotype sample size
     -- set of distinct haplotypes from the locus to marker x
     -- ith most frequent haplotype
     -- number of      haplotypes

 iHH12 scores are calculated for all sites in the genome then
normalized. Regions with large numbers of extreme scores are 
identified as putatively under positive selection.
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Searching for soft selective sweeps in
worldwide human populations

Zachary A Szpiech1 and Ryan D Hernandez1,2,3
1Department of Bioengineering and Therapeutic Sciences, University of California at San Francisco, San Francisco, CA 94158
2Institute for Human Genetics, University of California at San Francisco, San Francisco, CA 94158
3Institute for Quantitative Biosciences (QB3), University of California at San Francisco, San Francisco, CA 94158

iHH12 Power Calculations
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ZA Szpiech and RD Hernandez (2014) selscan: an efficient multithreaded program to 
perform EHH-based scans for positive selection. Molecular Biology and Evolution 31: 
2824-2827.
On a single thread selscan runs up to an order of magnitude faster than other publicly 
available implementations of iHS and XP-EHH, with an option to run with multiple threads 
for shared memory parallelism.

Windows, OSX, and Linux binaries (plus source code) available at 
https://github.com/szpiech/selscan

Want to perform iHS or XP-EHH genome-wide scans fast?

|iH
S|



• We developed an extremely efficient, multithreaded tool that calculates several statistics:   
https://github.com/szpiech/selscan 

• selscan calculates: 

• Extended Haplotype Homozygosity (EHH) 

• Integrated Haplotype Score (iHS) 

• Cross-population EHH (XP-EHH) 

• mean pairwise sequence difference (sliding windows) 

• Also a novel method for inferring soft sweeps (coming soon).

selscan: an efficient multi-threaded program to perform EHH-based scans

for positive selection

Zachary A. Szpiech1,∗ and Ryan D. Hernandez1,2,3

July 9, 2014

1 Department of Bioengineering and Therapeutic Sciences,
University of California, San Francisco, San Francisco, CA,
USA
2 Institute for Human Genetics, University of California,
San Francisco, San Francisco, CA, USA
3 Institute for Quantitative Biosciences (QB3), University of
California, San Francisco, San Francisco, CA, USA
∗ zachary.szpiech@ucsf.edu

Abstract

Haplotype-based scans to detect natural selection are useful
to identify recent or ongoing positive selection in genomes.
As both real and simulated genomic datasets grow larger,
spanning thousands of samples and millions of markers, there
is a need for a fast and efficient implementation of these
scans for general use. Here we present selscan, an effi-
cient multi-threaded application that implements Extended
Haplotype Homozygosity (EHH), Integrated Haplotype Score
(iHS), and Cross-population Extended Haplotype Homozy-
gosity (XPEHH). selscan accepts phased genotypes in mul-
tiple formats, including TPED, and performs extremely well
on both simulated and real data and over an order of mag-
nitude faster than existing available implementations. It cal-
culates iHS on chromosome 22 (22, 147 loci) across 204 CEU
haplotypes in 353s on one thread (33s on 16 threads) and cal-
culates XPEHH for the same data relative to 210 YRI hap-
lotypes in 578s on one thread (52s on 16 threads). Source
code and binaries (Windows, OSX and Linux) are available
at https://github.com/szpiech/selscan.

1 Introduction

Extended Haplotype Homozygosity (EHH) (Sabeti et al.,
2002), Integrated Haplotype Score (iHS) (Voight et al.,
2006), and Cross-population Extended Haplotype Homozy-
gosity (XPEHH) (Sabeti et al., 2007) are statistics designed
to use phased genotypes to identify putative regions of re-
cent or ongoing positive selection in genomes. They are all
based on the model of a hard selective sweep, where a de
novo adaptive mutation arises on a haplotype that quickly
sweeps toward fixation, reducing diversity around the locus.
If selection is strong enough, this occurs faster than recom-
bination or mutation can act to break up the haplotype, and
thus a signal of high haplotype homozygosity can be observed

extending from an adaptive locus.
As genetics data sets grow larger both in number of individ-

uals and number of loci, there is a need for a fast and efficient
publicly available implementation of these statistics. Below
we introduce these statistics and provide concise definitions
for their calculations. We then evaluate the performance of
our implementation, selscan.

1.1 Extended Haplotype Homozygosity

In a sample of n chromosomes, let C denote the set of all
possible distinct haplotypes at a locus of interest (named x0),
and let C(xi) denote the set of all possible distinct haplotypes
extending from the locus x0 to the ith marker either upstream
or downstream from x0. For example, if the locus of interest
x0 is a biallelic SNP where 0 represents the ancestral allele
and 1 represents the derived allele, then C := {0, 1}. If x1 is
an immediately adjacent marker, then the set of all possible
haplotypes is C(x1) := {11, 10, 00, 01}.

EHH of the entire sample, extending from the locus x0 out
to marker xi, is calculated as

EHH(xi) =
∑

h∈C(xi)

(

nh

2

)

(

n
2

) , (1)

where nh is the number of observed haplotypes of type h ∈
C(xi).

In some cases, we may want to calculate the haplotype ho-
mozygosity of a sub-sample of chromosomes all carrying a
‘core’ haplotype at locus x0. LetHc(xi) be a partition of C(xi)
containing all distinct haplotypes carrying the core haplotype,
c ∈ C, at x0 and extending to marker xi. Note that

C(xi) =
⋃

c∈C

Hc(xi). (2)

Following the example above, if the derived allele (1) is cho-
sen as the core haplotype, then H1(x1) := {11, 10}. Similarly,
if the ancestral allele is the core haplotype, then H0(x1) :=
{00, 01}

We calculate the EHH of the chromosomes carrying the
core haplotype c to marker xi as

EHHc(xi) =
∑

h∈Hc(xi)

(

nh

2

)

(

nc

2

) , (3)

where nh is the number of observed haplotypes of type h ∈
Hc(xi) and nc is the number of observed haplotypes carrying
the core haplotype (c ∈ C).

© The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License 
(http://creativecommons.org/licenses/by-nc/3.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided 
the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
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Table 1: Runtime performance (in seconds) of ihs, rehh, and selscan for calculating unstandardized iHS for various data
sets. Calculations running over 100,000 seconds were aborted. ∗rehh integrates over a physical map instead of a genetic map.
Using a physical map does not affect selscan’s runtime (data not shown).

Data Set ihs rehh∗
selscan

threads = 1 2 4 8 16
IHS250 19, 275 563 618 306 162 84 58
IHS500 45, 547 1, 652 1, 554 782 399 220 150
IHS1000 > 100, 000 4, 834 4, 018 2, 019 1, 040 566 380
IHS2000 > 100, 000 12, 652 7, 054 3, 633 1, 869 1, 046 752
CEU22 19, 434 588 353 182 93 50 33

Table 2: Runtime performance (in seconds) of xpehh and selscan for calculating unstandardized XPEHH for various data
sets. Calculations running over 100,000 seconds were aborted.

Data Set xpehh
selscan

threads = 1 2 4 8 16
XP250 11, 113 287 141 71 38 25
XP500 57, 006 766 403 194 104 67

XP1000 > 100, 000 2, 037 1, 018 515 274 180
XP2000 > 100, 000 5, 683 2, 798 1, 471 763 493

CEUYRI22 37, 271 578 291 150 78 52
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What you probably should not do
• Compare statistics between coding and non-coding regions. 

• High coverage exomes vs low coverage WGS means that 
the patterns of diversity observed in the two regions are 
generally not comparable without correction factors.
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