Population Genetic Analyses Using 1000 Genomes Project Data

Ryan Hernandez UCSF

ryan.hernandez@ucsf.edu

twitter: @rdhernand

Department of Bioengineering and Therapeutic Sciences a joint department of the UCSF Schools of Pharmacy and Medicine

Types of questions

Demography

٠

- Population expansions/ contractions
- Population divergence/ mixing
- Admixture

- Natural selection
 - Positive selection
 - Allele frequency distributions
 - Haplotype frequencies
 - Negative selection
 - Allele frequency distributions
 - Allele sharing
 - Haplotype patterns

Admixture as a lens into recent human demography

3-way Affy 6.0 pipeline

Recombination breaks haplotypes as well as local ancestry tracts.

Substantial Global Genetic Diversity in 1000 Genomes

 Ancestry calls available: <u>ftp://ftp.1000genomes.ebi.ac.uk/</u> vol1/ftp/technical/working/20140818_ancestry_deconvolution/

Migration Timing Events in Peruvians

PEL, -485.543518596

- Gravel (2012) Population genetics models of local ancestry. Genetics 191, 607-619.
- tracts: <u>https://github.com/sgravel/tracts</u>

PSMC: Views into ancient human demography

- The number of heterozygous and homozygous positions along an individual's genome is informative about historical population sizes.
- The Pairwise Sequential Markov Coalescent model is a method for modeling these patterns using an HMM to infer when (and by how much) population sizes have changed throughout time.

PSMC: Views into human demography

By analyzing all 2504 samples in TGP, we are gaining deeper insight into human demographic history.

Natural Selection

- Common methods for inferring natural selection model haplotype patterns across individuals.
 - Within populations: iHS
 - Across populations: XP-EHH

MBE Advance Access published July 10, 2014

selscan: an efficient multi-threaded program to perform EHH-based scans for positive selection

Zachary A. Szpiech^{1,*} and Ryan D. Hernandez^{1,2,3}

- We developed an extremely efficient, multithreaded tool that calculates several statistics: <u>https://github.com/szpiech/selscan</u>
- selscan calculates:
 - Extended Haplotype Homozygosity (EHH)
 - Integrated Haplotype Score (iHS)
 - Cross-population EHH (XP-EHH)
 - mean pairwise sequence difference (sliding windows)
 - Also a novel method for inferring soft sweeps (coming soon).

Data Set	ihs	${\tt rehh}^*$	selscan				
			threads $= 1$	2	4	8	16
IHS250	19,275	563	618	306	162	84	58
IHS500	45,547	1,652	1,554	782	399	220	150
IHS1000	> 100,000	4,834	4,018	2,019	1,040	566	380
IHS2000	> 100,000	12,652	7,054	3,633	1,869	1,046	752
CEU22	19,434	588	353	182	93	50	33

iHS around LCT

Homo sapiens lactase (LCT) region

Chromosome 2 (Mb)

iHS around LCT

Homo sapiens lactase (LCT) region

iHS around LCT

Homo sapiens lactase (LCT) region

What you probably should not do

- Compare statistics between coding and non-coding regions.
- High coverage exomes vs low coverage WGS means that the patterns of diversity observed in the two regions are generally not comparable without correction factors.

Acknowledgements

- Zachary Szpiech (UCSF)
- Alicia Martin (Stanford)

- Eimear Kenny (Mt. Sanai)
- Adam Auton (Einstein)

