home > bioproject > PRJEB2389
identifier PRJEB2389
type bioproject
sameAs
organism
title Beyond the consensus: dissecting within-host viral population diversity of foot-and-mouth disease virus using next-generation genome sequencing
description The sequence diversity of viral populations within individual hosts is the starting material for selection and subsequent evolution of RNA viruses such as foot-and-mouth disease virus (FMDV). Using next-generation sequencing (NGS) performed on a Genome Analyzer platform (Illumina), this study compared the viral populations within two bovine epithelial samples (foot lesions) from a single animal with the Inoculum used to initiate experimental infection. Genomic sequences were determined in duplicate sequencing runs, and the consensus sequence determined by NGS, for the Inoculum, was identical to that previously determined using the Sanger method. However, NGS reveals the fine polymorphic sub-structure of the viral population, from nucleotide variants present at just below 50% frequency to those present at fractions of 1%. Some of the higher frequency polymorphisms identified encoded changes in the heparan sulphate binding site and were present in both feet lesions revealing intermediate stages in the evolution of a tissue-culture adapted virus replicating within a mammalian host. We identified 2,622, 1,434 and 1,703 polymorphisms in the Inoculum, and in the two foot lesions respectively: most of the substitutions occurred only in a small fraction of the population and represent the progeny from recent cellular replication prior to onset of any selective pressures. We estimated an upper limit for the genome-wide mutation rate of the virus within a cell to be 7.8 x 10-4 per nt. The greater depth of detection, achieved by NGS, demonstrates that this method is a powerful and valuable tool for the dissection of FMDV populations within-hosts.
data type Other
organization
publication
properties 
{...}
dbXrefs
sra-run  ERR024706ERR034192ERR034193
sra-submission  ERA015837
biosample  SAMN00009845
sra-study  ERP000476
sra-sample  SRS024887
sra-experiment  ERX009687
distribution JSONJSON-LD
Download
bioproject.xml  HTTPS FTP
status public
visibility unrestricted-access
dateCreated 2011-01-13T00:00:00Z
dateModified 2011-01-13T00:00:00Z
datePublished 2011-01-13T00:00:00Z