home > bioproject > PRJNA152319
identifier PRJNA152319
type bioproject
sameAs
GEO  GSE35510
organism Mus musculus
title Isl1-Lhx3 fusion specifies motor neuron fate by inducing motor neuron genes and concomitantly suppressing the interneuron programs
description Combinatorial transcription codes generate the myriad of cell types during development, and thus likely provide crucial insights into directed differentiation of stem cells to a specific cell type. The LIM-complex composed of Isl1 and Lhx3 directs the specification of spinal motor neurons (MNs) in embryos. Here, we report that Isl1-Lhx3, a LIMcomplex-mimicking fusion, induces a signature of MN transcriptome and concomitantly suppresses interneuron differentiation programs, thereby serving as a potent and specific inducer of MNs in stem cells. We show that an equimolar ratio of Isl1 and Lhx3 and the LIM-domain of Lhx3 are crucial for generating MNs without upregulating interneuron genes. These led us to design Isl1-Lhx3, which maintains the desirable 1:1 ratio of Isl1 and Lhx3 and the LIM-domain of Lhx3. Isl1-Lhx3 drives MN differentiation with high specificity and efficiency in the spinal cord and embryonic stem cells, bypassing the need for sonic hedgehog. RNA-seq analysis revealed that Isl1-Lhx3 induces the expression of a battery of MN genes that control various functional aspects of MNs, while suppressing key interneuron genes. Our studies uncover a highly efficient method for directed MN generation and MN gene networks. Our results also demonstrate a general strategy of utilizing embryonic transcription complexes for producing specific cell types from stem cells.Overall design: Examine the RNA expression profiles of inducible motor neurons-embryonic stem cells (iMN-ESCs) with or without Dox treatment, with biological duplicates.
data type Transcriptome or Gene expression
organization
publication
22343290
external link