home > bioproject > PRJNA227798
identifier PRJNA227798
type bioproject
sameAs
GEO  GSE52402
organism Mus musculus
title Intestinal subepithelial myofibroblasts support the growth of intestinal epithelial stem cells
description Intestinal epithelial stem cells (ISCs) are the focus of recent intense study. Current in vitro models rely on supplementation with the Wnt agonist R-spondin1 to support robust growth, ISC self-renewal, and differentiation. Intestinal subepithelial myofibroblasts (ISEMFs) are important supportive cells within the ISC niche. We hypothesized that co-culture with ISEMF enhances the growth of ISCs in vitro and allows for their successful in vivo implantation and engraftment. ISC-containing small intestinal crypts, FACS-sorted single ISCs, and ISEMFs were procured from C57BL/6 mice. Crypts and single ISCs were grown in vitro into enteroids, in the presence or absence of ISEMFs. ISEMFs enhanced the growth of intestinal epithelium in vitro in a proximity-dependent fashion, with co-cultures giving rise to larger enteroids than monocultures. Co-culture of ISCs with supportive ISEMFs relinquished the requirement of exogenous R-spondin1 to sustain long-term growth and differentiation of ISCs. Mono- and co-cultures were implanted subcutaneously in syngeneic mice. Co-culture with ISEMFs proved necessary for successful in vivo engraftment and proliferation of enteroids; implants without ISEMFs did not survive. ISEMF whole transcriptome sequencing and qPCR demonstrated high expression of specific R-spondins, well-described Wnt agonists that supports ISC growth. Specific non-supportive ISEMF populations had reduced expression of R-spondins. The addition of ISEMFs in intestinal epithelial culture therefore recapitulates a critical element of the intestinal stem cell niche and allows for its experimental interrogation and biodesign-driven manipulation.Overall design: Two samples of intestinal subepithelial myofibroblasts were used in this study.
data type Transcriptome or Gene expression
organization
publication
24400106
external link